101006_Machining

101006_Machining - Famifiy ‘ Subgroup Typical processes...

Info iconThis preview shows pages 1–22. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 6
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 8
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 10
Background image of page 11

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 12
Background image of page 13

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 14
Background image of page 15

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 16
Background image of page 17

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 18
Background image of page 19

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 20
Background image of page 21

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 22
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Famifiy ‘ Subgroup Typical processes Sand casting ExpendabIe moid Shell casting Investment casting Gagging Lost foam casting L Die casting MU'np‘e'use mom { Permanent mold caSting fasting Mechanicaf machining or Materiak v{ removal Nontraditionsf Eteefiroeoéishing machining ' Efeettoéischarge machining Wateriet Laser beam Forging Hm Roliing bask? fiesmmg Extrusion Deformation processes Wire drawing v Cairo forming Swaging Ron forming Deep drawing Oxyfuei Weching Arc Plasma Consofidation Resistance processes Laser Ssazéng { ~ Seddering fiéhes‘Ye {Discrete fasteners ' banding integrai fasteners Mechanical Press fit L- Soriok fit joining FEGURE 13% Materials processing famifies, subgroups, and typicai processes. 'l‘able 1 Scale for ratingmanufacmring processes, . CW“ “m ’ Mama Operating- Ratmg time: (293% W mm m 1 >15 min Foot m, worm reliabifiag We: exam Mme! WW '2 169% of finished-compomm Substantial whim: and tooling co: 2 5w 15min Ammonia): Slam-We: msomooeb Toolingaodmfiimscosxly 3 l to 5 min Average to good qualixy MW clmgeovez mo wasp time Wage ll} to 50% Tooling and manholes relatively immensng 4 203w 1min Gwdwexceflentquafify Fastcimgmm m< toes {WW ‘Toofingcosssslow/litflo equipment 5 dos Exoeiiem quality Powwow Mammal: WW Nome Rating scheme: 1, poomsi: 3, boot. Sow: Raid was 2 Rating of characteristics for common manufacturing processes Cycle Materiai Equipment W Shape time Flexihifity Quality toolingcosts m Prams: {fasting my . 3 3D 2 5 2 2 l AHB, \bé l5 swam-mime 3D 1 5 2 2 4 AHB,%%15,p23 W casting 3D 2 4 4 4 3 AHB, Vb: 15. p 25 mm mold casting 3D 4 2 2 3 2 M18, “215, p 2’? Pressmadiccasting 313de 5 l 4 2 I AHBflbi lip28 mmg 3D 3 1 5 4 l ARE, W 15, p32 Camimgal casting 3D hollow 2 3 5 3 3 ABE, ‘bl 15, p 29 Injection owlding 3D 4 l 4 3 I EMH, W 2, {33% Reaction injection molding (RIM) 3D 3 2 4 2 2 EMH, Vol 2, p 344 Camssion molding 3D 3 4 4 2 3 EMH, Vol 2, p 324 Rotmional molding 3D hollow 2 ' 4 5 2 4 EMH, Vb! 2, p 366 Mommting, contact molding 3D 1 4 4 2 4 EMH, V012, p338 Forming Forging, open die 3D solid 2 4 3 2 2 AHB, Vol 14, p 61 Forging, hot closed die 3D solid 4 l 3 3 2 AHB, Vol 14, p 75 Sheet metal forming 3D 3 I 3 4 I AHB, W114, p 44 Rolling 2D 5 3 4 3 2 AHB, W114, p34 Extmsion 2D 5 3 4 3 2 AHB, W1 14, p 31 Supenplastic fanning 3D 1 1 5 4 l AHB, Vol 14, p 85‘ Thennofmning 3D 3 2 3 2 3 EMH, Vol 2, p 399 Blow molding 3D hollow 4 2 4 4 2 EMH, V012, p 352 Pressing and simcring 3D solid 2 2 5 2 2 AHB, Vol 7 Isostalic pressing ' 3D 1 3 5 2 l AHB, V3317, p419 Slipcasting 3D I 5 5 2 4 ENE, Vol 4, p 153 Machining Singlopoim culling 3D 2 5 AHB, Vbl 16 Moltiplopoim cu! 3D 3 4 AHB, Vol 16 Grinding 3D 2 4 A88, Vol 16, p42 Elem‘ical dischm’ge machining 3D I 1 A83, Vbl 16, p 55' Joining Fusion welding All 2 5 5 2 4 M13, Vol 6 Bmzinglsoldaing All 2 5 5 3 4 ABE, Vblé, p929 Adhesive bonding All 2 5 5 3 5 EMH, W 3 Fasteners 3D 4 5 4 4 5 .. . Surface treatment Shot peening All 2 5 5 4 5 AHB, W15, p 138 Surface hardening All 2 4 5 4 4 A88, wt: CVDIFVD All l 5 5 4 3 ABE, Vol l3, p 454 “Ham”. c: Ln“. ‘)nf;flhr («nun fioffi A {JD 3! ('21 unnyflxnnb- CW pnninnomn’ Mnfprr'irfo HannfiknnSr nai:o~r~ h/qu-vw... 3 a ‘ may» " Magi'é'zmm: Prm’ w 1396 is: The mangs in Tabié 33.34; are mini: :3 am} {here am be gigaificam xai'iaiions; in speck} zippéiczziiozig. F05 cmmpée. hfiabtreaicd big? :izgiban Casi «:26: miis iii}: miiing miils. Sec— :E’z m» "a 'A,,,“~,\ ,‘ 4.__,.,*” 3 § ic’iésfiééimi gamma E E33 xigrigu; éinisi‘: (Figs. M. E4: gins} “E” i210 Azi‘ié :‘eiaicfi {mez‘azions dz:me if??? iamtaw; midi as {he ciumczezisgic» aszid aga>§3<§éiizjm 0%" {he mu- »; 2 m: moi; xiii’fnsssz \‘ibmtim and chuazg’x’: puma; piii'i‘zmcié’i‘fii moi gmmczw aad wear; Elbe \« use (13'? cutting fiuidra; the machimbiiiiy of gin: uoflgpiccc mazcriai: and opei‘azar skiiii Aa'; a 112‘ wit, a wide range oft/gurfizce 2251331135 can (ibzz‘zinsai. :15; xii-mm in Fig 33:14, aim Fig. 36.4. 3 FiCURE 23.} 4 The range of surface i’oughsieages obtain precesges. Note the Wide range within each group, espec boring. See aigo Fig. 26.4. mi in vansz machining; iaify in turning and Roughncss (Ha) 31:11 Process pin. 2000 1000 500 250 125 {73 32 I6 8 7 I 0.5 5U 25 12.5 6.3 3.2 lb 0.8 0.40 0.20 0.10 0.05 0.035 (1.012 4 l x )Flamc cutting W I E g i y i lSnagging (coarse grinding) M i - Average applicatmn i Sawing M :3 LC” {WWW app‘mmo‘l 3 Flaming. shaping I W i Drilling I Chemical machining ' * Electrical—digcharge machining - i g — l A Miiiiiig LM.” ' » E i i i «L g z s i ‘ M Broaching ; E i V Reaming i i i iElectnan—bailrn iimchining { n i iLager machining I i ‘ i Eiectrechcmica! machining h g'fm'ning, bayirig Barsei fiaishéag i i ’ i i i i i i E W ‘ Mia % , : fEiectmcizcmical grifldégig g g i g i i , . . i i E i E i E gRazIIcr burmshizig 3 g i g i ’ i 5 " g E > V E f a , . , gfirmdmg f g . g - i a 9 r 5 § § momng { L f i g .— . i i“ . . i x w -= Electropolmhmg i i f g , s i ‘ § . i Poiighing i i if g _ ' i , i f E 2 i i ' 5 iLappmg E E . . . X E 3 g E Superfimshmg g E i g ; Section 20.1 [Introduction 535 (a) Straight turning (b) Cutting off FIGURE 20.1 Exampfes of cutting processes. Feed (mm/rev or in./rev) FIGURE 20.2 Basic principie of the turning operation. Raugh surface? \ Chip HGURE 28.3 Schemafiit Efiustraiicn of a we» dimengignai cutting Mr Flank pmcegs, aiso cafied : Reiiafoz Ofthqgenai suiting. Nats Cieamfifie {£531 {339 £005 Shape and 51:5 aagieég depih 0?‘ cut :5), and the cutting speed, V, are afl independem variabiesx Operation Turning Grinding Sawing (of plates and sheets} Drilling Boring Reaming Grinding Sawing Broaching FiGURE 21-10 Operations and machines for machining cylindrical andfor flat surfaces. [ Block diagram Most Machines commonly less Machines used frequently seldom machines used used Lathe NC lathe Boring mill Turret lathe machining center ~ _ Lathe (with Cylindrical special ander attachment) Laser contour 0" Flame cutting band 53‘” Plasma arc Drill press Machining Lathe Horizontal center (no) Horizontal milling Vem mining boring machine machine machine Boring mill Lathe Boring mill Horizontal . . . : boring Mil‘IDIngl;l machine machine n press Machining center Lathe Drill press Boring mill Horizontal _ , boring machine machine Machining center ' Lathe (with Cylindrical special grinder attachment) Contour or band saw _ Arbor press Breachan (keywav maChme breaching} (continues on next page) Most Machines commonly less Machines used frequently seldom Operation Block diagram machines used used Work Tool Facing / Lathe Boring mill fa /Tool Broachmg / Work Broaching Turret machine breach 4’ V ,' ,1 Wark Lathe (With Grinding & SW8” special Tool grmder attachment) Tool Sawing Cutoff saw Contour saw Work / Tool Shaping ! Horizontal Vertical u Work shaper shaper *"K’, Tool Planing Planer 4% Work slab milling _ . Lathe with Milling M'll'rfg special maChme milling tools face milling Work . . /Tool Ml”an Lathe with ch‘ - D ‘l .c." Mma .ine Spamal ‘l’l I press achinmg mining tools (light cuts) center FIGURE 21 ~10 (continued) (a) Straight taming (b) Taper turning (c) Profiling E 44 Depth ‘ of cut * — / feed.f <—- IT”! / (d) “fuming arid external grooving; (8) Facing (f) Face grooving T (h) Boring and internal grooving FiGURE 22.i Various cutting operations that can be performed on a lathe. Note that aH parts have Circuiar symmetry. HGURE 22.2 Spindle Specei (Wham? se‘cczoz' \ ’ ' ' Tn? ‘:t r“ “ b , ‘ x ‘ f “ p“ W Components of a lathe. o ‘ \ g ‘ f r— 3313 v ~ X I, ’H ’ “hunk f {I ruCompound if! j! Dead center SOUICQ‘ CGUfiey/‘f' 0f ;/ .5 T‘aéismckquéli Heidenreich& Harbeck Fascia? we Loagézoéémi ‘“ immvefsa feed eonémi a; 1 w m Speed change Workholder Controls levers Feed reverse Workpiece Cutting 0"" Feed rod Machine tool "lathe" FlGURE 21-2 The basic machine tool for turning is called a lathe. This figure shows an engine lathe. ‘ Basic Machining Processes R aw a. Typical Typical Applicable Material _____________________________________ 3K? ‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘ A, Production Material Typical Surface Process Form Maximum Minimum Rate Choice Tolerance Roughness Turning (engine Cylinders, 78 in, dia. g“; in. typical 1-10 All ferrous and nonferrous $0.002 in. on din. 125.250 lathcs) preforms, >t 7‘3 in. long parts/hour material considered common; 1-0001 in. castings, machinable obtainable t‘orgings Turning (CNC) Bar, rod, tube, 36 int dia. 6% in. diet. l~2 parts/minute to 1-4 Any material with good $0,001 in. on dia. (33 or better preforms X 93 in. long parts/hour machinability rating where needed; 380.0005 in. possible Turning (automatic Bar: rod Generally 2 in. die. in. die. and less, 10~30 parts/minute Any material with good $00005 in. possible; 63 average screw machine) K 6 in. long weight less machinability rating 320.001 to $0,003 in. than 1 ounce common Turning {Swiss Rod (L‘ollets adapt to Collets adapt to less 12~30 parts/minute Any material with good $00002 in to $0,001 in: 63 and better automatic in. din. than in. machinability rating common machining) Boring (vertical) Casting, 98 in. X 72 in, 2 in. X 12 in. 2~20 hours/piece All ferrous and nonferrous i 0005 in. 00850 proforma Milling Bar; plate, rotl7 4-6 ft long Limited usually by 1-100 parts/hour Any material with good :t: .0005 in. possible; 63.250 tube ability to hold part machinability rating ::0.001 in. common Bobbing {milling Blanks. ltl-ft-dia. 0100 in. din. 1 part/minute Any material with good $0.001 in. or better 63 gears) preforms, rods gears machinability rating ‘lélvin. face width Drilling; Plate, bar, ~in,»dial drills 0.002-in. drill dia. 2.20 second/hole after Any unhardened material; $0.002- :l:0.010 in. 03050 preft'irms (l -inl«dia. setup carbides needed for some common; $0.001 in normal) case-hardened parts possible Sawing plate, sheet 2»in. armor plate 0.010 in. thick 3-30 parts/hour Any nonhardened material $0.015 in. possible 250-1000 in. is preferred) Broaching Tube. rod, bar, 74 in. long 1 int 300—400 parts/minute Any material with good i0.0005- $0.00] in. 32ml 25 plate machinability rating Grinding, Plate, rod, bars 363 in wide >< 7 in 0.0201n.dia, 1-1000 pieces/hour Nearly all metallic 0.0001 in. and lo dia. materials plus many nonmetallic Shaping Bar, plate, 3 ft 1*: 6 ft Limited usually by 1—4 parts/hour Low to medium-carbon $0.00] :t0.002 in. 63-250 casting ability to hold part steels and nonferrous (larger parts) metals best; no hardened i00001~ £00005 in. parts (smalbmedium parts) Planing Bar, plate, 42. ft wide X 18 ft Parts too large for 1 part/honr Low to medium-carbon i0.001~5:0l005 in. 63-»125 casting high X 76 ft long shaper work steels or nonferrous materials best Gear shaping Blanks 1200):},“diii. gears l in dirt 1—60 parts/hour Any material with good +0001 in. or better at 63 dint face machinability rating 200 DP. to 0.0065 in. at width 30 DP. 22.4 GEOMETKY Figure 22-12 shows the cutting toot geometry for a singke teal: (H53) used in turn— ing. The back rake angle affects the ability of the tee} to sheet the work matefial and form the chip. It can be positive or negative. Positive rake angies rectum the cutting forces, 5m 22-12 Standard terminology to describe the geometry of single-point tools. 21:} maggomi View of tool {a}: obiique View of tooi from cutting edge c} to? vtew cf} 0-55qu View from shank end Ens: cuttingedge angie (ECEA) Nose radius ECEA End cutting-edge angte Location of side rake Side cutting~edge angie , (SCEA) ‘ Back rake angie (BRA) Side rake - '7 angie (RAY) I: ‘ H Location of resuitant Refer piane rake 3‘. Side View Front shank . . u l and View Side cuttth edge ang e toastion of back rake Side reiief angie m/ (SRA) (ERA) End'cutting Side J\ 3698 angle rake angie, + {ECEAO Cutting edge Back rake angte (BRA) Side reiief engie {Sim} ‘ L-—-—~—‘Side-cutting edge angie \ s (SCEA) 1/ 2 Axis av? 3. \-—-~ Clearance or end reiief angfie ~\ t Ki \,\1/ Resultant Eb} Ed} FIGURE 20.11 Farms acting cm a in . Note that “ force, R, m baalgmgg tiwmzs. Cutting edge .fi P— \‘\ .Rog—.. ~.:~.. f Material removed by - - - - >- Work one tooth fm (c) Ailowances for cutter approach (d) Feed per tooth FIGURE. 25-1 Peripherai miiiing can be performed on a horizontal spindie miiiing machine. The cutter rotates at rpm N, removing metal at cutting speed V. The aiiowance for starting and finishing the cut depends on the cutter diameter and depth of cut, DOC. The feet per moth, ft, is seiefled by the operator. FIGURE 253 End miiiing an a verticai spincfie Whine using a cutter whim cuts on the eigd am: Sides. Beiow is a schematia showing W and 90% whiie miii‘mg a step in a biock 0 meta . End View Side View / T * Emi Mm m 2 in diam, 6 teeth i Fixture «13$? :3! Vise Stainims DOC "' Depth 9“ cm 003 x Depth of immersieh 1; :KWTER 3:3 Syéiééag 322:1? Eek-flaking §3mcsg$ss Sewnéaw angha 3i}; - 4%): {23.2.3} ?§%mezy angész 49 u 8‘: {true} 5" i fi-facéai ngnt Heéicat {Salaam chése! 995m? Can eiiminate came! dziiléng cm NC machining centers Exceiitent hate geometfy C5059 reiationship berween {ma Fam~facet 660:3 se§f~camering abééity Breaks up chips for daep-hole skiiiing . h E _ S a h i no 2?“ Can be generated in a single grénding 9'28 and o a 3‘29 econ an; “n9 e w {we} Operafion increased {00$ fife anary angle 10“ (true? / ! Eiimmate center drifiing in NC Lower {may reqmremems v Leaves burr on breakthmugh / . Split point B’Ckford ' _ Recon (radiused conventional! paint) . ’ _ Combination of helmet and Recon increaged feed rates 5pm DOW 0’ Cfank‘éhaft 51”” pmnt feamfes Increased tool life (8—10 times in CH GOO? se‘f'ceétenng ab'hty V ‘ Self-centenng and reduced burrs Reduced burrs at breakthrough Breaxs up chips for deep-hole dnlhng Excelfent ho!e geometry Not se‘f‘cemering !ncreased toot life 9 ‘ Reflex/ed heiical Twisted fiuie Reduces thrust force Eliminaie chisel edge Equil, rake angte Center core driil or Slot point drill 33m {Breatiy reduced thrust fl _ - : : Came: com remflwd by ducziie fracture fiensiafi} Tézwst 2268 1125 Thrust force (ms) >008 ~{HS .020 ‘02? Feed, ipi’ FIGURE 24—4 Variations of the conventionai driil geometry at’e usuafiy aimed at reducing the thrust force a: the chisei end of the drifi. 966 I Special~Purm Materials Exceuent increaaéag 36% of wt Increasing feed Fig. 33 Types of chips formed as a function of feed rate and depth of cut for a given too! geometry and cutting speed “g :5 § Mm: khip mm “a firm W} Ax $3 u $2 {3? Lag??? if”; a { f}? Cim::r§rw:fi{3% M i (:i‘sim. :3; M mam W%t%‘“‘% mm {My r“: ti 3““: 3 m3 m x am§"'e:rs<::5a€3f%§gt,§£ ty .5. x, i i i» 96% a! E; 2% k? W w “ "WORK "I‘EC‘E '- FRAGMETNT OF i'EL’lL’I'—E.‘P EDGE ' bib-1C A PING \‘I’ITH '\-'\FIL'}:'-:.i{ PEI-ICE MW. 31% mmposite photograph of a highly magnified chip and a built-up @dge. (Courtesy The Cincinnati Milling Machine Co.) memmimgmph qr a ()blatned In b11353}:an Mflwm war-«w (flaming OfAISI 1018 mi. Undeformed surfaces. Part of the catastmphmany shearfafled surface mmer Warm the foflawing segment due to intense shear. Ontense shear band formed due to catastmphic: mam (warms; the upmaan stage of the segment being formed. Intense/w sheared surface of a segment in wntw with the ram and subsequenfiy sfid 33mg the too! face. Mensa toeafized deformation in the primary grime}! 20m. Mmh‘mm gurface. [0.4. 9’9"?“ “ V w” a Wr-Jocalized Mwlmflrm drip formation ofcertam dWmltJo-macbme materiéls. (irflwmm 6 warning speed 150 flfmm. awn“;wa unpa’ Wzi’w wt an Luxung bpaxcua m tNWiMM-iix “Malaya. \ _ 3 r. m continuum chips, especially,r fl With other difficult-to-machmc mam» .f.‘ “ 3 1%ng spew individual scg- ' rials, such as nickel-based superalloys 3* :1- mmx {if a chip m: completely and hat-timed alloy mwx, ft 'mm at ffi§ffi3fi$ m: mama! 233? ad fiamaticm {sf shear-localized spfieds “within a transiliun : m m photograph Wm m «w: ,mit3m speed range that (1096065 “56% ma» W ' = panicdby mam {1f {ml retrial, its metallurgical condition. am as Mg?! Whether at wt in: a lame: dew, fccd. (few ‘ nansmon fiom mflnuous m shear-localized drip at 400,!!! min. devolnpcr! sborfl-Jnrah'n'd chi!) (It 30017 f m i "- 3%” “’"fmlfied at“? Wm” ‘9 wgmvflw “m ‘21th detawfld a: Wfl/mm. « am?» am $340 MN}. Pbrnomlrragrnphs showing the with v ’ E65 1Tz'cwmwhiHing: mt‘fimu 0001‘s: A181 1100. 13.001.0111‘11. 111} 15H) BUN mm M11th Mari». AWE 1000 mark)». 1143-3-10 HUN x1110): Neath. A181 1.100. #0011. 510111}. 510011. and 9001} PNEUW‘. WU .340 BUN (“am 1mm: may, 110111112121. :md 111310111011. 13113- ffiW 131W 11");11‘1131131111; anemiva M13715; mung)“ «100 mm) 3500 mum mad 1’11 1pr, Fwy-.210 HUN Ammmiz; 511111110314 Much: wmug1‘11 300 and .100 «5211.3». 140' W0 BHN Sugwrullnyx: mm, 1111:1131. 1111111111111. and «submit Mluyx. 21111-300 MEN 11m) $1001». mnught highmpwd, .0ka :méxisz, and 11m 11m! MN! «11111 WW1»; LIEO~Z<10 HHN Numm‘rmm 1mg,munchinng 111111th aluminum. wwppm‘. .4011; and 1mm 111103114, {40-4120 BUN Ncmng‘mlhm: uy1mm. :wryhcx. amd [simmiic swim Smuw.‘ Hm! 12mlAlmug/twmrfreg .121; sm rm“ Hum/inn)!“ Cutting Speed [sfpm {mlminfl Suggested Machining Parameters for Turning Various Materials“ Feed Rate fin/rev (n‘xm/revfl Depth of Cut [in (mm)} 3011800 {(30344) 1 7 5 ~- 000 {0.1483} 301% 1 200 (f) 1 300) 1 75—4150 (53-~-~137) 1 253% 25 ( 3 I 30) 30 1S0 19-40) 100—300 (30-01) 4-00 1 21 )0 (12?. "3.06) 350~~~800 ( 1 07 ~244) 1‘00 w 1 600 1?. 13—4188) 550» 1 200 ( man-36(3) 200-5750 {6 1 "229) 450~850 ( 137-259) 41254350 (130498) 150400 (46~ 1 22) 275-»750 {84~229) 1 0004mm (305-610) 800- 1 500 (2444157) Vex). 1. ~11!) edition, Kmmanmtal, Inc. 0.0 (L008?) (0.25~2.16) 0.0 0~0.055 (0.254 .40) 0.0 (£0040 (0.0254 .02) 0.01 041040 (0.25-1.02) 0.01 04)!)25 (0.25-1.02) 0.010~0.065 (0.254 .65) 001041085 (0.25-2.16) 0010—0040 (0.254 .02) 00054)!) (0.134138) 0.00500 (0. 13.41.38) 0.005410 (0.134138) 0005-00 (90.134138) 0.005»0.0 (0.13-0.38) ().005~«0.0 (90.134138) 0.005~»0.0 .3 5 S 5 ‘1 5 3 (0.134138) 0005—00 1 5 (0.13—0.38) 0005-0015 (0.134138) (13.18—17.15) 0. 25-0675 and up (3.18-~~~17.15) 0. 2543.675 and up (3.184715) 0. 2541.675 and up (53.184715) 0. 25~0500 (3.184270) 0.125~0.500 {318—1270} 0. I 000300 (254*762) 0.125«~0.675 and up (3.184715) 0.125-~0.675 and up (31847.15) 012543.500 (3.18~12.?O) R0ughing Finishing Roughing Finishing Roughing Finishing "HE-0&1 100 101_)0«2000 0.0 0—0085 0005—00 5 0. 25416175 Up H) 0.180 (7(3V-V335) {305%110) (025—2. 16) (0.134338) and up (4.57) Up to 0.180 {4.57) Up :0 0.180 (4.57) Up to 0.180 (4.57) Up to 0.180 (4.57) Up to 0.180 (4.57) Up to 0.100 (4.57) Up to 0.180 (4.57) Up to 0.10 (4.57) Up to 0.180 (4.57) Unit Power (hp-min/in3) Specific Energy (in.—lb/in3) Material (Hardness) HPS K, or U Steel (120 Elm) 1.12 443,000 Steel (120 Blur) 0.86 347,000 Steel (120 Elm) 0.76 301,000 Steel (120 Elm) 0.64 254,000 Steel (120 Elm) 0.54 214,000 Steel (160 Elm) 1.25 495,000 Steel (160 Bhn) 0.59 234,000 Steel (200 Bhn) 1.50 594,000 Steel (200 Elm) 0.73 290,000 Steel (300 Elm) 1.87 740,000 Steel (300 Elm) 0.92 364,000 SAE-302 0.72 285,000 SAE-350 1.20 475,000 SAE-410 0.75 297,000 Gray C1 (130 Bhn) 0.29—0.33 127,000 Meehanite 0.554176 262,000 K-Monel 0.80 317,000 Inconel 700 1.40 554,000 High—Temperature Alloy A 286 1.20 475,000 High—Temperature Alloy S 816 1.25 495,000 Titanium A-55 0.65~0.76 281,000 Titanium C—130 0.81~0.93 345,000 Titanium (250—275 BHN) 1.8~2.0 Aluminum 2014-T6, 2014-T4 0.24 95,100 Aluminum 6064—TO 0.34 125,000 Aluminum 30030 0.16 63,400 Aluminum 108 (55 BHN) 0.15 49,400 Muntz Metal 0.55 218,000 Phosphor Bronze 0.33 131,000 Cartridge Brass 0.48 190,000 Copper Alloys (10480 Ra) 0506 Copper (50 RB) 0.9~1.0 Magnesium (40~90 BHN at 500 kg) 0.16 Tungsten,Tantilum (210320 BHN) 2.6~2.8 Nickel Alloys (280860 BHN) 1.8»20 Nickel/Cobalt Alloys (200»«360 BHN) 2.0-2.5 Values assume normal feed ranges and sharp tools. Multiply values by 1.25 for a dull tool. Calculation of Unit Power (HE) HP : £9733000 HPS 3 l/leMRR Where MRR : lBVm; for tube turning HPS I fiVleVtw >< 33000 : FCfIw ii 396000 Calculation of specific energy (U) U 1“ IiV/Vzw : Ejtw for tube turning FIGURE 21~24 There are three types of vibration in machining. ' Free Vibration The response to an ini- tiai condition or sudden change. The amplitude of the vibration decreases with time and occurs at the natural fre- quency of the system often produced by interrupted machining. Often ap- pears as lines or shadows following a surface discontinuity. ' Forced Vibration The response to a pe- riodic (repeating with time) input. The response and input occur at the same frequency. The ampiitude of the vibra- tion remains constant for a set input condition and is noniineariy related to speed. Unbaiance, misaiignment, tooth impacts and resonance of rotating sys- tems are the most common exampies. ~ Self-Excited Vibration The periodic re- sponse of the system to a constant in put. The vibration may grow in ampii- tude (unstabie) and occurs near the nat- ural frequency of the system regardiess of the input. Chatter due to the regener- ation of surface waviness is the most common metai cutting exampie. Free vibration 1/ x“) / 1‘ Workpiece Unbalance Fomed vibration time Seif—excited C vibration Chatter Present surface Previous surface 7771’ ’ [A fl /,;/ be“; A»! Workpiece Phase shift 506 CHAPI‘ER 21 Chatter in boring Helical pattern Chatteir marks due to phase shift FIGURE 21-25 Some examples of chatter that are visible on the surfaces of the workpiece. FIGURE 21-26 When the everlapping cuts get out 0? phase with each other, a variable Chip thickness is produced, resulting in a change in FL. on the teei 0r workpiece. Fundamentals of MachiningXOrthOgonal Machining /# Feed marks / 1w Free vibration edge shadowing which decays following surface interruption ~—Chatter Chatter in turning, plunge cutting and chamfering during single point operations Chatter i / 1/1 Feed l 7;; < Feed 1 \r 1‘31 Chatter due to increased radial r immersion leading to more edges \\ engaged in cut Chatter in face milling visible in the surface finish Back-striking marks » free vibration J due to force release and tool spring back _..._ J- __.. + Chatter in end -Tool path milling \ K L Loss of static deflection preload and increased radial engagement LChatter in corners (qu immersion shown) m— Material removed *4._____. F6 e cutting force Y r; A rake angie 7 w clearance angie ‘ Xi; H previews surface vibe X » present surface vib. I L s g Y ~modula’nen direction i l l i ‘ w phase shift X0 Cutting edge i i: uncut thickness Werkeiece W: Width of cut into the piane ...
View Full Document

This document was uploaded on 12/19/2010.

Page1 / 22

101006_Machining - Famifiy ‘ Subgroup Typical processes...

This preview shows document pages 1 - 22. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online