{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

TopologyControl_CoverageConnectivity

# TopologyControl_CoverageConnectivity - EE/CS652...

This preview shows pages 1–8. Sign up to view the full content.

EE/CS 652: Topology Control Coverage-Connectivity Amitabha Ghosh Bhaskar Krishnamachari EE-Systems, USC

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Why Topology Control? No topology control: nodes  transmit at max power levels No topology control: nodes  transmit at min power levels   High energy consumption •  High interference   Low throughput   •   Network may partition
An Example of Topology Control Benefits   Global connectivity   Low energy consumption    Low interference   High throughput Topology Control:  Given a network connectivity graph, compute a sub-graph  with certain  properties: connectivity, low interference etc.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Problem Problem Problem To find optimal transmission power levels using  To find optimal transmission power levels using  local local  information   information  such that network  such that network  connectivity connectivity  is maintained.  is maintained.
2D CBTC  [Wattenhofer (ETH) ’01; Li ’05] Global connectivity from local geometric constraints Cone Based Topology Control Main Result If every node adjusts its power level, so that there is at least one neighbor at every  =2 /3 sector around itself, then network is connected =2 =2 /3 /3 Assumptions 1.Maximum Power Graph is connected  2.Receivers can determine senders’ directions 3. 3. Complexity Complexity     O(d log d) d = avg. node deg d = avg. node deg 4. 4. Works only in 2 dimensions Works only in 2 dimensions

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
3D Topology Control 3D CBTC   [Bahramgiri (MIT) ’05] Basic Idea Each node increases its power level until there is at least one neighbor at  every  3D cone  of apex angle  =2 π /3  around it Limitations - Assumes directional information - High time complexity –  O(d 3  log d) /2 Critical avg. node deg:   15 in 2D   vs.   34 in 3D   (for n=1000)   [Poduri, Sukhatme, EmNet’06] No ordering of nodes based on angular information in 3D
Solution Approach Phase 1 Use Multi-Dimensional Scaling (MDS) to find  relative location maps  for  each node’s neighbors when they use max. power

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.
• Fall '07
• BhaskarKrishnamachari
• Wireless sensor network, Topology Control, Amitabha Ghosh, Tom Tom Jack Peter Max Jack Peter Max

{[ snackBarMessage ]}