This preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full DocumentThis preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: 1. BME C101/C201. INTRODUCTION TO BIOMEDICAL ENGINEERING
FALL 2010 PROBLEM SET 2 Due October 14, 2010 (Thursday) Recall the charged planar wall example from lecture (see ﬁgure below). In this analysis,
we used a boundary condition at the surface (x=0) and at xéinﬁnity. In reality, you are
analyzing a charged surface in an aqueous solution in a beaker, and the beaker has ﬁnite
dimensions. Accordingly, you are never at an inﬁnite distance away from the charged
surface. Can you provide an estimate of what “inﬁnity” is in a real situation? ' + +
+ +
+ +
+ +
+ +
+ +
+ +
+ +
+ + Consider a spherical micelle comprised of the surfactant dioctanoyl phosphatidylcholine
(Cg—lecithin). This is a zwitterionic surfactant with both positive and negative charges as
shown below. In one spherical micelle, there are N surfactant monomers. As shown
below, the micelle may be modeled as two spheres with the entire negative charge of the
micelle smeared over the surface area of the inner sphere of radius Rm and the entire
positive charge of the micelle smeared over the surface area of the outer sphere of radius
Rm. Assuming the salt ions in solution corresponding to a particular value of the Debye
Hﬁckel screening length (16’) cannot penetrate the region between 0 and Row, derive expressions for the electrostatic potentials in Regions a, ,8, and 5 shown below. Do not
solve for the constants of integration. However, you need to derive the boundary
conditions that are required to evaluate the constants of integration. Although the
expressions for the electrostatic potentials and the boundary conditions may not be a
function of all of the following parameters and variables, these equations can be a
function of k3, T, e (the electronic charge), N, Row, Rm, r, K, constants of integration, and
the dielectric constants in the 0c, ,8, and 6 regions (i.e. 8a, 8/}, and 85). In this problem, use
the Linearized PoissonBoltzmann equation. n (1)6 (13H3 EB
CH3—(CH2)7C~O—('3H—CHZ—O—ﬁ—O—CHzCHz—N—CH3
CH3(CH2)7ﬁ—OCH2 0 CH3 model as 3. Do the electrostatic interactions between two proteins increase or decrease as more
potassium chloride is added to the solution? Explain why. 4. Derive an expression for the electrostatic potential in the aqueous solution outside a
sphere having a radius R and a surface potential We at r=R. The ionic strength of the solution outside the sphere is known, and it’s value is on in units of M. Use the
Linearized PoissonBoltzmann equation with the dielectric constant not a function of
position. I . . ‘ ...(
>601 Wam‘ I‘D ée, (1:!be ,‘p (Ala/ﬁe: 90.9 0' 01% [gaff/M ans'Wr LS" 4/4) 3’3“” you am “782’ a)" ﬁe «may Mare, ’4” WWW" 57"“: as
./ / ' . . ,
MK Mam/d a/Joée 7%, Wm» M K m 7%, r/Aamwwsﬁc LII/”fix sad/(L 743’” ”‘0 J'Wyﬂz % 7%; eﬁms/Wﬁ‘c Ihﬂra WW5; 2!  l
1;) K41 (in: 04 and ﬂ #1144. W "Lab; ”"5 Jb
0
a l . I.
/ d Vi‘ﬁ =0 ' VW; : 0
53A,»
75in. WW 3 $WL~£6 37mm}. I g d‘l’ E 39¢, a d
M 2 04
F; [r (f “TI/)5O W > ) é (pounoUwri mﬁbe‘m: 0W6 NichOL Pgr ﬂu C, mshufx 4‘ (yd—Qamﬁm wk“; hams)? 5‘73 Cr: :3 KMBC. .' 5L3 (r; A“; 32%? (Hair) For Ha remznma 313C , +
:, weanedﬁa 63,17 6mg“: [awal» r= ﬂow , r= klh+,aﬂd(0{r(le,i‘ he 4;. (JW ‘1‘"? as + Marge:
0 4/ “nu/C  644:“ng «ex
as") "'14
i ”83'
‘1
9"! 4
fanfward harm! it + r Vé)'a‘?:§£€r filing; It)’ @576?) :0
4a £7 hayavarmﬁo'y, ,‘h r cine. ﬁn adv/acnan/Jymmﬁ/ 50%? k¢rm Wxaéw an‘ r: ﬁjﬂh #713}: ,3) r'“\ .9 “Ne ¢~ SM“ 0/] 514.»th Lil“?! Inc/KM
)3 [email protected]‘ $6 a ' \ ~ 5,56% M
“."1' 6? E 'dy’ E; Wﬂ’M “’7” Pe'ﬁérm 6‘8““:wi 75; 0(1’ Ct); ("3 leh°0 an [rile 4A Wu‘: hﬁ‘r’e Maﬁa. a: ,Wr/Mrwlnﬁ 130 dJ' deg'dS—D: 0 4—. no ahc’o‘M ‘AﬁgC 3' 772+: eluafws‘szfér I'VII‘ﬂr‘th‘V'bks? Adm 734/0 ’Drafﬁhs vmar‘ej
a} ”719”? P¢ﬂ$5‘l‘um ﬁll/017% l3 (LW 753 7474. Wbn,
7724 aw pm‘a mum and 6/4le% 15776 4217/ rm
71776. I a/ébfr/Z 749/69 frm 7%?— MD pry/517M. 
m Delia wan,M {mun/73y Iag/zh. m, aka 1% wad h
and/ya 7%,”; proélém, 77w M17é¢¢~fﬂ£¢kal fawn/2’2» [ﬂ 7%
e M ‘ m (7 ”a? J
u I 1 l5 t‘z/zal’adab’l‘ﬁ'a’a. luciﬁz 797* Wﬁaﬁb 227%:ng
9&6an am MM mat. 2 i1 2.
 E 2' mama) . I
HI [4—, ¢ .aJ ﬁght/k 7‘ 4: We“ ”a “heariw‘ PO'FW" Bo’+‘*w~n wsw‘v'm «9.1% Er "vita 74mm». axonWon. Viv/[F] = Kay/(11:9 ”Sea Spit/I‘M wa (2.0% A 6L! J— 2, 2. 9'1" 1 I
rz[grfr f3“; 9/¢)]9¢+ Hana? £5/5‘IW/999J¢) r96 +r€¢n"6 (%ce1KL%%”/U 3W4. ﬂu; Mn Wide 1%: Sphm dmahm‘ “(7 aw'ﬁ': ﬁamd 525 (Oman! var’tYS Wig! ”,9 ﬂu, pro $41»... 1‘: SPA/"£4.47 SJMWI'G 9
(a: )c¢=/ [ff/09%
E? :1) Sik/p/iyé‘m' 7/1)." ’11; d7 (if/.2. [d 27%)): K150 '(‘VW WEE Moe/h Qeviml’rubéems a55/6" 1: J L a
Ordnari ‘ awake, Saw $614.; {PFLaa’ODE «Ar/~44.
oaflvaKﬂ/BJ‘ no“) . W M 53159427 a)? aLﬁluaian and/{MW
[W 0L For
,L 2 (/2511 y; 2’ “KS fun/Qi
r2 7 2;; +2r g? :g 90
aw 
”' 4. i d“, ~. 2. ’_
”2, r 217’ K 5”»0 E7 (’29
LaF LLE r5”
s”! = M5! 53 r3) Shawna: {5213} we 127.0”): dHur—‘7Li aE/Wﬂ)‘ 2~ ~I ... '7 4?!“ .2 ~ ~
ol 'W 1” JF)+’F “r “”371: ~kLuFI=0
—3 zdu
2W“ "V 07? “FM/“4. ”all“ "
J}: r {z ~2Mr+2~1ﬂ< ”I
.sz r ‘ I” 0‘" "WW” :0
r Tit “HZMrI'o
a)”; ._
d‘u ' CharadttIISrIa'n. BﬁMNbWL.
2 l 2 r it.
(75 km 0 WM 3‘41"
(Ul’Kl) so
(WK) (mum an 17:44 or 3:“ Wﬂgem I
u : A'Wékr) + 844,: (HOT) 60%: an: r‘l’
I Lab: ”4* 0K "K g ‘
r p( 1') +7.14? [+149 57.11;) ' E92:
:5 ”R, thy: 5; {3)
{3900 '
’, Wag E7 (é) Fir was? {itcm. Mmplw'ﬁ . d
A t .. 222 {ﬁxin— My} 3"“ “m“ W'h
PPJ 31/ 69 14m: 19 . LII/:0 2 J '
Aq wwfwop +é'g’a SJperf—RO .0 : re A ‘
, M3 BMW” 3I'nce mum '
4‘ch 'f'P— Mn. 7‘;th '1 “t“
Huz. A?!) r 3% ’{b v‘h‘Am‘Ij J“
r whylﬂc) Emmi“ LLB“. Since. “5:0, 20pm) human
‘1”: A+ w («M raw—7)
Afp'g E7345):
V: = ﬁfe? (44,?)
A 3 Vi 2? 87:40 (MK) Rays/c2.
/ ‘7": Le [aggro (we)  —";e¢,a[kr) 9D= ‘7‘: (7):) Jame/41’2“”) 56'”) '33“ WaJ' Show“ in Ieol'uror H—l_ (5w EreokgT l "2,4“
F 61% 1.9.) lo3 m ””7"” 3WW Jamiw: ﬁregA H"
.We. are. WW 37.3. a?“ :14 “hm—r01 "twearHj' ...
View
Full Document
 Fall '10
 KAMEI

Click to edit the document details