ma1012_hw9_201012

# ma1012_hw9_201012 - Mathematics I: Homework 9. Limit...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Mathematics I: Homework 9. Limit Laws. Thomas’ Calculus 11th Edition, Chapter 2, Section 2: 1, 7, 13, 17, 23, 31, 35, 39, 43, 47, 49. Total: 14 Answers 1.  ­9 7. 5/8 13. 16 47. È7 b h c È7 lim h hÄ! Section 2.2 Calculating Limits Using the Limit Laws œ lim ŠÈ7 b h c È7‹ ŠÈ7 b h b È7‹ h ŠÈ7 b h b È7‹ " 77 17. 3/2 23. 3/2 h hÄ! œ lim h Ä ! h ŠÈ7 b h b È7‹ (7 b h) c 7 œ lim31. 4 È h Ä ! h Š 7 bh bÈ 7 ‹ œ lim h Ä ! È 7 bh b È 7 œ " #È 7 48. lim È3(0 b h) b 1 c È3(0) b 1 lim h hÄ! ŠÈ7 b h c È7‹ ŠÈ7 b h b È7‹ (7 b h) c 7 3h œ lim 3 œ lim 7 œ limÈ b h b 1 7 1 h ŠÈ7 b h b Èh ‹È3h b 1 b "‹ Ä ! ÄŠ! 7È3hb Èb‹ h hÄ! h Š hÄ! h 35. 3/2 ŠÈ3h b 1 c ‹ ŠÈ3h b Using Section 2.2 Calculating "Limits 1 b "‹ the Limit b 1) c " (3h Laws œ lim œ lim h ŠÈ3h b 1b "‹ hÄ! h Ä ! h ŠÈ3h b 1 b 1 ‹ 39.  ­10,  ­20,  ­1, 5/7 43. 2 œ 3 # 77 È 7‹ " " œ lim È7bhbÈ7 œ #È7 hÄ! 49. lim È47. 2x# œ È5 c 2(0)# œ È5 and lim È5 c x# œ È5 c (0)# œ È5; by the sandwich theorem, 5c È3(0) b 1 1 b "‹ # a œ 50. xlim! b 2 b 1 x b #œ 2 c 0 œ 2 and xlim! 2 cos x œ 2(1) œ 2; by the sandwich theorem, xlim! g(x) œ 2 lim Ä 3 c œ 3 Ä Ä h Ä ! È3h 1 x sin x 2c2 cos x limŠÈ3h bœcÈ5 È3h b 1 b "‹ f(x) 1 "‹ Š x œ limÄ ! 49. œ lim È hÄ! hŠ 3h b 1b "‹ xÄ! xÄ! h Ä ! h ŠÈ3h b 1 b 1 ‹ (3h b 1) c " 51. (a) 1c x ‹ 1 œ 1; c 0 œ 1 and # 6 È5 c 2(0)# œ Èxlim! Šlim È5 œ 1 # œ È5 c (0)xlim!È5; by by the sandwich theorem, xlim! 5Ä and the sandwich theorem, cx 6 œ Ä Ä xÄ! (b) For x Á 0, y œ (x sin x)/(2 c 2 cos x) lies between the other two graphs in the figure, and the graphs converge as x Ä 0. c 0 œ 2 and lim 2 cos x œ 2(1) œ 2; by the sandwich theorem, lim g(x) œ 2 xÄ! xÄ! x sin x œ1 (x sin x)/(2 c 2 cos x) he other two graphslimthe " c 24 ‹ œ lim 52. (a) in Š # x xÄ! xÄ! e graphs converge as x Ä 0. 1ccos x " lim œ #. x xÄ! ‹œ1c 0 6 œ 1 and lim 1 œ 1; by the sandwich theorem, lim xÄ! 1 # x Ä ! 2c2 cos x " # œ1 " c lim x Ä ! #4 x œ c0œ " # and lim xÄ! # œ " ; by the sandwich theorem, # (b) For all x Á 0, the graph of f(x) œ (1 c cos x)/x# lies between the line y œ " and the parabola # yœ 4‹ " # x c x# /24, and the graphs converge as x Ä 0. œ " # œ lim 1 xÄ! # c lim x Ä ! #4 c0œ " # and lim " xÄ! # œ " ; by the sandwich theorem, # œ ". # the graph of f(x) œ (1 c cos x)/x# " he line y œ3. and the parabola at those points c where lim x% œ lim x# . Thus, c% œ c# Ê c# a1 c c# b œ 0 5 # xlimc f(x) exists Ä xÄc xÄc , and the graphs converge as x Ä 0. Ê c œ 0, 1, or c1. Moreover, lim f(x) œ lim x# œ 0 and lim f(x) œ lim f(x) œ 1. [email protected] xÄ! xÄ! x Ä c1 xÄ1 54. Nothing can be concluded about the values of f, g, and h at x œ 2. Yes, f(2) could be 0. Since the ...
View Full Document

## This note was uploaded on 12/26/2010 for the course MA 1012 taught by Professor Franciscoperez during the Fall '10 term at ITESM.

Ask a homework question - tutors are online