ma1012_hw19_201012

# ma1012_hw19_201012 - Section 1: 1  ­9(ODD, 15,...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Section 1: 1  ­9 (ODD), 15, 23, 35, 43, 45, and 61 0.1 Ê 1.09999 Ÿ f(0.1) Ÿ 1.1. Section 3: 5, 7, 17, 23, and 27 Section 4: 1, 3, 9, 15, 21, 27, and 35 c" 4x 218 w% bc#œc4x1+5+7=2 f roblems c x% bc# Ê of c Ê% bf ww"(x) œfc(x) œ fTotal: 1bc#xœ 4xcÊb3 ww (x)for  Derivativesf w\$ b Ê aincreasing when when0.1 Ê f w (x) is increasing when 1 c c a1 c x% c b a% b a1 4xx œ p 4x œ 0 0 for 0  x Ÿ 0.1 œ 1 c x b is 0 for 0 x Ÿ a a1 \$ 0 ww a62. x (x)Chapter 4 Applications c a1 x Ÿ 0.1 ac4x (x) is w cx Ê f (x) increasing 4 Applications of Derivatives c \$ b a1 c x b f(0.1) c 2 f(0.1) w and 1 Ÿ w 1.0001 in f w min f w max f w 0d) 1.0001. Now we havewe have0.1c 2 f(0.1) c 2 Ÿ 1.0001 .1 Ê œ 1 andœ 1 and(œŸ xfŸœ 1.0001. Nowœ11Ÿ max fŸœ 1.0001. Now we have 1 Ÿ 0.1 Ÿ 1.0001 max w 0.1 Ê min f 0.1 ven Problems 2 Ÿ c 2 Ÿ Ê 2.1Answers to EŸ22.10001. Ÿ 02.1Ÿ f(0.1) c f(0.1)0.100010.10001 Ê f(0.1) Ÿ 2.10001.Ÿ 0.10001 Ê 2.1 Ÿ f(0.1) Ÿ 2.10001. Ê .1 Ÿ f(0.1) Section 4 x 63. (a) Theorem  c then c Ê f(x)  f(1). Theorem f(x) c f(1)  by the 1, then by the Mean ValueSuppose .1f(x) 1,f(1) f(x)byf(1) Mean Value Suppose x  1, then 0 Ê f(x)  f(1). Suppose x  1, then by the  0 the 0.1) Ÿ 1.1. Ÿ 1.1. 99 Ÿ f(0.1) b) and 0 and lim (a), lim f(x) c f(1) Ÿ 0 f w (1) lim f(x) c f(1) 0. rt (a), lim f(x) c f(1) 3. 0 f(1) lim f(x) c f(1) f(x) 0. Since w (1) exists, these twoxone-sided Since w Ÿ x 0. c1 From part (a), lim1 (f(x) cYes.ŸFrom part c 1 x c f(1) c 1f Since and x exists, these two one-sidedf (1) exists, these two one-sided xc x Äc 1 Ä1 xÄ1 xÄ1 xc1 x1 xÄ1 xÄ1 w w w w al and have the value f5. limits wareÊ f w (1) Ÿhave f w (1) w0 (1) Ê f œ 0. 0 and f w (1) 0 Ê f w (1) œ 0. are equal and have the (1) Ê w (1) equaland f 0 and 0 value (1) œ f w (1) (1) Ÿ value f f (1) Ÿ 0 and (1) the Ê f f Ê 0. f(b) c f(a) 7. w w wfw Mean œ f Theorem lue Theorem we 64. From the f(b) c\$f(a)Value(c)cwhere c is #have b.a aand fb. (c) whereœqis between a and b. But f (c) œ 2pc b q œ 0 have f(b) c f(a) œ f w (c) where is between a and b ean Value Theorem (a) b f(r) œ b c a b 16r w Ê f w (r) œwe between c Butœ (c) œ points c Ê f0 œ bbbbb, increasing on (c_ß _), never But 2pc b œ ca 15. # we have 3r 9r b 16 Ê no critical f (c) 2pc wb q œ 0 w w q b 16r c no as160 Êone critical is a c Ê f œ bbbbb ion c œÊ fqp(r) œ 9r. b Ádecreasingsince fpoints function.) p Á 0 , increasing on (c_ß _), never ne solution#c .œ(Note: h(Note:since fsolution c œ quadratic function.) since f is a quadratic function.) c #qp p onlyp Á 0is a quadratic #p . (Note: (b) no local extrema trema 4.3 AND THE DERIVATIVE TEST THE (c) no absolute FUNCTIONS AND UNCTIONS AND THE FIRST FIRST DERIVATIVE TEST FIRST DERIVATIVE TEST NIC FUNCTIONS MONOTONIC extrema e extrema (d) w 1. at andat 0 and 1 1) Ê critical points (a) 0 f (x)1œ x(x c 1) Ê critical points at 0 and 1 x(x c 1) Ê critical points b) w on (c_ß ( and ) and Ê increasing on on cc bbb bbb (Ê ifncreasing ±!) c_ß±"ß _), ("ß _), decreasing ) (!ß ") bb ± ccc ± Ê increasing œ bbbonccc (!bbb decreasing on (!ß "(c_ß !) and ("ß _), decreasing on (!ß ") ! " " ! " ( Local maximum maximum0 andœ 0 and minimum at x œ 1atat x œ 0 and a local minimum at x œ 1 at x œ at x a localc)a local minimum x œ 1 m xc1 se x  1, then by the Mean Value Theorem x c 1  0 Ê f(x)  f(1). Suppose x  1, then by the xc1 f(x) c f(1) f(x) c f(1) 1. Mean Value Therefore f(x) c f(1) 1 for all xf(x)  f(1) œTherefore f(x) 1 for all x since f(1) œ 1. heorem x c 1 f(x)  f(x) Theorem f(x) 1 f(x) Ê since f(1). f(1) xc Value Theorem  0 Ê 0 Ê f(1).  f(1). Therefore  0 1 for all x since1. œ 1. c# \$ % s b Ê cww" Ê f ww fa1 b x% a1 b xb% cos x c"# a4x\$f ww (x)xœ c sin x% œ w (x) c 1 b a4x\$ c x x% c x bxx% cos xbf (x) 61.c(x) œœ acos xx% cos xbb cosÊ c cossin xb %a1 bxb cos xb a4x cos x c x sin xb c# c# % xŸ s b (4 xbc# c x sin œ cx0 ax)b Ÿ for xb (4 cosw (x) x fsin x)  0 for 0 0 Ÿ Ÿ Ÿ 0.1 x f w 0.1 x)  \$ 1 bxx% cos cos x(4 cos x Thomas’ 0x0 cos 0 0.1x1th 0.1 cis decreasing when Ÿ when0.1ŸÊ Ÿ (x) is decreasing when 0 Ÿ x Ÿ 0.1 c x sin for  alculus 1 Ê Edition, Chapter 4. x x 0 Ÿ Ÿ f x Ê w (x) is decreasing C f(0.1) c " w w w 1 0.09999 Ÿ f(0.1) c Ÿ f(0.1) c " w 99 and max f œ 1. Now we have 0.9999 Ÿ 0.1 ¸ 0.9999 and max f w Ê 1. in f ¸ 0.9999 0.9999 Ÿ fŸœ 1." Now we have 0.9999f(0.1)0.1 1 Ÿ 0.1 Ê 0.09999 Ÿ f(0.1) c 1 Ÿ 0.1 œ m Now we have and max f(0.1) cÊ Ÿ 1 Ê 0.09999 Ÿ 1 Ÿ 0.1 Ÿ 1 c c" Section 4.3 Monotonic FunctionsSectionand the First Derivative Test the First Derivative Test and the First Derivative Test and Section 4.3 Monotonic Functions 4.3 Monotonic Functions215 215 Mathematics I: Homework 19. Extrema: Part I c# 215 xc1 2. (a) f w points c 1)(x b 2) )(x b 2) Ê critical points (x)c2 (xat c2 and 1 Ê critical points at c2 and 1 (x c 1)(x b 2) Ê criticalat œ and 1 b) f w on (c_ß (c and ("ß and ("ß _), decreasing _ß c ) ccc±± ccc ± Ê increasingœ bbb onccc ±c#) _),Ê increasing on (2ßon 3. 2ß ") ("ß _), decreasing on (c2ß " ) bb bbb bbb (15. increasing ± c#) _ß bbb decreasing on (c c"2(c #) and Ê c# " " c# " 35. local minimum at x œ 1 m at x œ at and a local a localmaximum at x œ 1 maximumc2x œ c2 (c) minimum at x œ 1at x œ c2 and a and Local minimum 16. (a) h(r) œ (r b 7)\$ Ê hw (r) œ 3(r b 7)#w Ê a critical point at r œ c7 Ê hw œ bbb ± bbb, increasing on 7)\$ Ê hw (r) œ 3(r b 7)#f wÊ œcritical point at r œ ccriticalhpoints at c± bbb, increasing on a 7Ê œ bbb 2 and 1 c( . points points at 1 # # ) (x c 1)# (x bcritical(a) (x) c2 and 1)2(x b 1 Ê (x b 2) Ê 2) 3Ê 43. at (x c c and 2) critical c( w _ß c7) (cœ cccr (bbb ±), never Ê increasing on (c2ß 1) and ("ß _), decreasing on (c_ß c2) c(ß _ bbb decreasing r (c±± _), never decreasing 1) bbb(ßbbb ± Ê increasing on (c2ßon (c2ß("ß _), ("ß _), decreasing on (2) _ß c2) cc bbb (b) f ncreasing ± and 1) and decreasing on (c_ß c c Êi c# (b) no local extrema " c" # " trema (c) No x œ at (c) no local maximum al maximum and a local minimumc2 extrema imum and a local minimum atabsolute x œ c2 and a local minimum at x œ c2 e extrema (45. d) c 1) 4 (a) f w (x) œ (x and 1# (x b 1# # c 1)# (x b 2)# . Ê critical points at c2 and2) Ê critical points at c2 and 1 # ) (x b 2) Ê critical points at c2 (x b) f w on (c_ß (c r 2) r Ê _), ("ß _ decreasing bb bbb (61. increasing ± c2) _ß bbb (c "ß ") r never on (c_ß c2) r (c Ê bbb±± bbb ± Ê increasingœ bbb onbbb (±c#ß ") r (#ß increasing ), never decreasing #ß ") r ("ß _), never decreasing c# " c" # " (c) No local extrema al maextrema Section 4.3 5c (a) f w critical c 1)(x (x c 1)(x b 2)(x . 3) Ê (x) œ (x points b 2)(x c 3) 3Ê critical points at c2, 1 and 3 )(x b 2)(x c 3) Ê critical points at4c2, 1at c2, 1 andof, and 3 216 5. aChapter 4 Applications of Derivatives wChapter 216 ) œ ccc ± Applications± Derivatives ± and ( Ê increasing _ß c c and (2) and cc ±± bbb ± ccc (b) fincreasing onbbbonccc\$ß bbb\$ß _), decreasing on (2) _ßand (\$) _("ßdecreasing on (c_ß c2) and ("ß \$) ±Ê bbb Ê increasingß 1) (c2ß(1) _), decreasing on (con (c 2ß 1) c"ß \$ß ), \$) bbb ccc bbb c# (c2 " and \$ Chapter 4 Applications of Derivatives b) w , c" # " \$ 7. \$ f (x) œ xc"Î\$ (x b 2) Ê critical points at c2 and 0 (a) f w (x) œ xc c) 7local minimac2x "Î\$ (xat and x1, local minima atat c2c2 and x œ 3 . (c) Local maximum 2 x œ Ê critical points x œ and 0 (a) at x œ at and c œ 3 b 2) œ 3 maximum1, local 1, œx m at x œ at x œ minima w (b) Ê wcritical points at )(2 bbb Ê increasing on (c_ß c2) and (0ß _ decreasing on ( (c2ß 0) ) f w (x) œ xc"Î\$ (x b 2) b) f f œ bbb ± ±ccc c)( and 0 Ê increasing on (c_ß c2) and (0ß _),), decreasing onc2ß 0) ( a) œ bbb ccc bbb , b) 7. , !! c# # c (a) f w critical points 7 % increasing1)(x(b \$ ) (x w# 1)(x b 1)(x7. critical(x)œ Ê atc8x# cbcon c1 w5) c minimum ), x4x(x b 2)(xand2) Ê c 7)(x b ± 16. œ)( bbb œ (xcc7)(xat 2)(x c 2,andÊ critical points at x0œ 0c1 c œ 0) 7 critical points at c5, w b 5) \$ points (c)4xLocal maximum b x œ 7 f (x) œ minimum œ Ê (a)c)f(x) 16x œ 4x(x b at 5,œ c2, local and (0ß _ œ x œ 0 and ( )(xfbœ bbb5) fcccc) ÊwLocalxmaximum116x Êc_ßÊ 2)4x c 16xatatdecreasing onx c2ß„ 2 critical points at x œ 0 and x œ „ 2 5, and c 2) local 8x b 16 Ê # (x) ! c ccc ± bbb ± ccc bbb Ê increasing ( c (c5 c and (7 _ œw cc ± bbb ± ccc(b) fÊ increasing on bbb!±and ±(7ß ±and decreasing on (on (_ß ß c 1)and5)"ßß7) ), decreasing on (c_ß c5) and (c"ß 7) bbb±± bbb ±±ccc ±±xbbb, fÊ iccc(c5c"1)x)5ß c1) _),), decreasing onon_ß c(5))_ß c(c!ß #) (decreasing on (c_ß c2) and (!ß #) Ê ic2, localcon ± (ßon ccc bbb increasing cc on c and ( _), cc & ccc " bbb 17. ancreasingminimum #ß(c œ ( (#ß _ (7ß,_), decreasing c#ß !2)and ( #ß and, c"ß 7) bbb œ ncreasing c at ! and # ( & c# c ) Local maximum at ( œ ) 0 c# c( c w c" ! 8. (c) Localœ xc"Î# (x c 3) œ ccritical points at at and 3 5 # w . (a) f minima xc"Î# (xat x Ê 1, criticalminima 0 œ c b) (x) maximum is maximumc1, œ 168minimawfat x maximum are3)7 „x2œlocalatœ 0, localxminimaand xaœ 7 b œ 0 at x œ „ 2 , local local at and c f a m at x is f(0)xlocal 1,(b) a0, (x) œ minima c5f(0)Ê b œat x points„ 2 and 3 are f „ 2 œ at œ cat x(a) local œ c5x œ x œand œ 167 0 x œ at 0 ximum œf œ ( ccc ± bbb Ê increasing on (\$ß _), decreasing on (0ß 3) (b) Êf œ ( ccc ± bbb Ê ( ) f w (x) œ xc"Î# (x c 3) b)no wcritical points at 0 and 3increasing on (\$ß _), decreasing on (0ß 3) c) c) absolute \$ \$œ „ 2 e maximum; absolute (minimum!is 0 atmaximum; absolute minimum is 0 at x œ „ 2 , x ! w ) f œ ( ccc ± bbb Ê increasing on (\$ß _), decreasing on (0ß 3) x œ 3 (d) No local maximum and a local minimum at (c) No local maximum and a local minimum at x œ 3 (c) ! \$ ) No local maximum and a local minimum at x œ 3 9.9. (a) g(t) œ ct#t# c 3t b 3Ê gwgw (t) œ c2t c 3Ê a a critical point at œ c 3 3 gwgœ bbb ± ± ccc, increasing on (a) g(t) œ c c 3t b 3 Ê (t) œ c2t c 3 Ê critical point at t t œ c # ; w œ bbb ccc, increasing on #; c\$Î# c\$Î# 3 # w w ) g(t) œ ct c 3t b 3 Ê g (t) œ 3 2t c 3 Ê a critical3point at t œ c # ; g œ bbb ± ccc, increasing on c ˆc_ß c # ‰ ‰ decreasing on ˆc # ß3_‰ ‰ ˆc_ß c 3 , , decreasing on ˆc # ß _ c\$Î# # ([email protected] value of ˆ ˆc 3 œ 4 b) localˆmaximum ttœc ˆc_ß c 3 ‰ , decreasing localc 3 ß _‰ value of g g c 3 ‰ ‰ œ2121atat œ c 3 3 (b) on maximum ## ## # # 4 3 (c) absolute ‰ œ 21 at t is 21213 t t œ c ) local maximum value of absolute maximum isc atat œ c # 3 (c) g ˆc 3 maximum œ 4 (d) 21 (d) # 4 4# 3 # x (b) a local maximum is g(4) œ 16#Î\$ x œ gw (x) localxminimumc"Î\$ œ 5(xœ 2) Ê gcritical pointsccc )( bbb, increasing on (c_ß at Ê 4, a œ 5 #Î\$ b 10 x is 0 at x b 0 and wxœ bbb ± at x œ c2 and œ5 x œÈx Ê 0 26. (a) g(x) œ x#Î\$ (x b 5) œ x&Î\$ b 5x 3 3 3 c) no absolute w 5(x b 2) Ê critical minimum œ at and ! c# 5x#Î\$ Ê gw (x) œ 5 x(#Î\$ b 10 xc"Î\$ œmaximum; absolute points at xis 0c2 x œ 0, 5 3 3 3 bbb x œ 0 Ê g œ Èx ± ccc )( bbb, increasing on (c_ß c2) and (!ß _), decreasing on (c2ß !)\$ (b) local maximum is g(c2) œ 3 È4 ¸ 4.762 at x œ c2, a loca (d) ! c# )( bbb, increasing on (c_ß c2) and (!ß _), decreasing on (c2ß !) x c3 c) 3b absolute œ#)c ") ! 2 g( (a) f(x) È x c # Ê f (x) c 2x(x c 2) c(a2) cno(1) is (x c extrema œ critical points at x œ 1, 3 (b) local maximum is3. c2) œ 3 \$ œ4x¸ 4.762 at wx œ œ 2, a localcminimum œ g(0) 3)(x0 at xÊ 0 (x (x c \$ È4 ¸ 4.762 at x œ cc) a local minimum is g(0) œ 0 at x œ 0 ( 2, no absolute3extrema 2x(x f œ bbb ± (x )( ccc (d) Ê cw2) c ax c 3b (1)cccc 3)(x c ") ±Ê critical points at x (c_ß 1) and (\$ß _), decreasing on ("ß #) an bbb, increasing on œ 1, 3 xc w 23. (a) f(x) œ x c # Ê f (x) œ œ (x c #) (x c 2) # " \$ (d) w 2) 2x(x c 2) c ax c 3b (1) œ#Î\$ c 3)(x± ccc&Î\$iscontinuous atwincreasing on (c_ßc"Î\$ ± Ê , x œ 1, 3 w 26. (x c 2) g(x) fœœ bbb#)c ")œÊ )( ccc#Î\$bbbat (x) œ 53x#Î\$ b 10 x 1) and (\$ßbx ), Ê critical points #) x œ (#ß \$and (a) Ê x (x (xc 5) x d b 5x points g x œ 2 3 b œ 5(x _ decreasing on ("ß at and c2 ), # Ê f (x) œ (x " 3 # critical \$ d) is f(1) œ 2 at x3œ 1, a local È (b) a local maximum minimum is f(3) œ 6 at x œ 3 bb ± ccc )( ccc ± bbb, increasingatbbb ± ccc )(\$ß _),,decreasing on ("ß _ßand (#ß \$),, _), decreasing on (c2ß !) 2 xiscontinuous x c_ß 1) c #) c2) and (!ß 23.daœ 0 Ê gw œon (œ(c) no and ( bbb increasing ) # " c# absolute extrema (\$ a local maximum is f(1) œ 2 at!x œ 1, a local minimum is f(3) œ 6 at x œ 3 , b) b) (d) œ 3 \$ 4 ¸ 4.762 at x œ c2, a local minimum is g(0) œ 0 at x œ 0 ous at x œ 2 È (b) local maximum is g( (c) no absolute extrema c2) ximum is f(1) œ 2 at xc) 1, aabsolute extremais f(3) œ 6 at x œ 3 local minimum (œ (d) no x e extrema c3 23. (a) f(x) œ x c # Ê f w (x) œ 2x(x c 2) c a2) c 3b (1) œ (x c 3)(x)c ") Ê critical points at x œ 1, 3 (d) x (x c (x c # 3 17. (a)(c) no absolute maximum; absolute 4x\$ c 16x is 04x(x b\$2)(x c 2) Ê critical points at x œ 0 and x œ „ 2 f(x) œ x% c 8x# b 16 (d) f w (x) œ minimum œ at x œ 0, Ê (b) no wlocal maximum, a local minimum is f(c2) œ c6 È25¸ c7.56 at x œ c2 ximum is g(4) œ 16 at x Ê 4, a local minimum is ccc œbbb, increasing on (c#ß !) and (#ß _), decreasing on (c_ß c2) and (!ß #) œ f œ ccc ± bbb ± 0 at x ± 0 and x œ 5 (d) \$ È c) no absolute c# œ ! # e maximum; absolute(a) g(x) œis 0Èmaximum; (5 c x)"Î# Ê gw (x) œ 2x(5 cat x œb x# ˆ " ‰ (5 c x)c"Î# (c1) œ 5x(4cx) xœ 22. (minimum x# at5 c x0, 5x# absolute minimum is c6 2 x)"Î# c2 # 2 È 5 cx (b)(d) local maximum is f(0)athematics I: Homework 1f9. Extrema: Pœ „I a x œ 0, local Mxœ 16 at and 5 Ê g minima are a „ 2b œ 0 at x art 2 Ê critical points at absolute minimum is w0œ ccc „bbb ± ccc Ñ , increasing on (0ß 4), decreasing on (c_ß !) œ 0, 4 ±2 (c) no absolute maximum; at x œ & ! % (d) and (%ß &) 26. (a) g(x) œ x#Î\$ (x b 5) œ x&Î\$ b 5x#Î\$ Ê gw (x) œ 5 x#Î\$ b 10 3 Ê f w œ bbb ± ccc )( ccc ± bbb, increasing on (c_ß 1) and (\$ß _), decreasing on ("ß #) and (#ß \$), # " \$ ŠÈ7x x ‹ Š a 7x c 27. (a) h(x) œb 2"Î\$ Èx#c #‹4b œ x(Î\$ c 4x"Î\$ Ê hw (x) œ 7 x%Î\$ c 4 3 3 27. (a) discontinuous#at x b œ x(Î\$ c 4x"Î\$4.4 Concavity and Curve Sketching h(x) œ x"Î\$ ax c 4 œ 2 Section Ê hw (x) œ 7 x%Î\$ c 4 xc#Î\$ œ Ê 229 critical points at 3 3 3 Èx (b) a local maximum7x bf(1) È7x2 at‹x œ 1, a local minimum is f(3) x œ at x 2 3 hw œ bbb ± is 2‹ Š œ c # œ 6 0, „œ Ê ŠÈ ccc )( ccc ± bbb, i „2 c 2 È7 4 "Î\$ ccc critical points at , increasing on Šc_ß È2 ‹ and Š È7 ß _‹ , decreasing on 4x\$ b 6x# hw (x) then(yw%Î\$noœ 0,cb712x hw œ bbb ± Ê c 3, œ 7 x œxcabsoluteœ c 6x# È Ê x #Î\$ extrema È Ê )( ccc ± bbb ! 7 3 c) 3 2x 3 d) È x c#ÎÈ( #ÎÈ( c) , c#Î ( ! #ÎÈ( ww (d) œ c12(x c 1). The 2) ccc ) ( ccc ±b 12 c, increasing on2 Šc_ß c2 ‹ and Š 2 ß _‹ , decreasing on Š c2 ß !‹ and Š!ß 2 ‹ and y œ c12x bbb 2 È7 È7 È È ! on((!ß #) and falls on (( _ßaÈ7and (#ß _). 2È7 (a) f(x) œ 3x xb 1 Ê f w (x) œ 3x a3x b 1b x (6x) œ 3x ax b 1b Ê ,a critical point at x œ 0 27. Š ) ß !‹ and Š!ß 4. ‹ Chapter 4 Applications ofa3x b 1c 7 a3x b 1b 7 #ÎÈ c 0) b 222 c2 Derivatives 24 È2 È2 c2 24 2 (b) h Š c2È2 ere is a local minimum b) local maximum is h Š È ‹ Ê 243xœ ¸b c x (6x)bbbÈaincreasing minimum !) h Š(È _œ and 7 ‹ œ c3.12¸ 3.12 at x œ È7 , the lo ( and at x œ 2 a local w 7 œ a w b 1 3.12 ± x œ c2x, b 1b local onlocal maximum‹is), c È never decreasing 3x f x bbb at œ 3x, 7 the Ê a critical point at7 x œ 0 7 ¸ 7 (c_ß is r !ß 7 24. (a) f(x) œ 3x b 1 Ê f (x) œ b) , a3x b 1b a3x b 1b The curve is concave up on (c_ß ") and ! (c) no absoluteb 2‹ ŠÈ7x c #‹ ŠÈ7x extrema (c) no absolute extrema (d) (Î\$ "Î\$ È2 24 È2 3x 7. (a) b c x (6x)w œ"Î\$ aax# b 1bbb,xno local extremahw (x) )œ 7 !ß%Î\$ ), and c#Î\$ œdecreasing a3x c21 h(x) f x bbb cb4b(b) increasing 24 Ê _ß ! r ( x _ c 4 x never b 3x x ± Ê critical points at Ê f _œ 2 Ê a critical point at x c 0 wn on ("ßw3.12 at x œa3x b, 1the local minimum is œ Š È ‹ œ c on (c¸ œ 3.123 1 there œ a3x b h 2 c 4x 3 3 Èx b 1 Ê ¸ (x)). At x œ È7 b is a point of 1b 7 ! (c) no7 absolute 7extrema c 2 bb ± bbb, increasing on œ 0, È2) r (!ß _), bbb ± decreasing x local„extrema (b) no(c_ß ! Ê hw œ and never ccc )( ccc ± bbb, increasing on Šc_ß È2 ‹ and Š È7 ß _‹ , decreasing on 7 7 ! ! È( È( c#Î #Î (c) no absolute extrema trema c2 2 e c 9x c 6x# c x\$ , then ywŠ È7 ß 9 ‹ a12xŠ!ß3x# ‹ extrema œ c ! c nd c È7 3)(B b 1) and yww 24. c12 c 6x œ 3x xb 1 b 2).h(x) œ‹3x a3x È2 b¸x3.12 œ x œxectionÊlocal minimum is Curve0‹ œ c 24 È2 ¸ c3.12 œ (a) f(x) œ c6(x Ê f w Š c2 œ 24 b 1 c (6x) at 3x a c21,b the aConcavity andathx œ Sketching Sb 4.4 critical point Š 2 123 (b) local maximum is a7 b 1b 3x a3x b 17 È7 Èb È7 7 ises on (c\$ß c") and falls on (c_ß c3) and Ê f w œ bbb ± bbb ( CONCAVITY AND CURVE increasing on 4.4 c) no absolute extrema ,SKETCHING (c_ß !) r (!ß _), and never decreasing c) , d) t x œ c1 there is a local maximum and at! Local local extrema cal minimum. The 1.(b) no maximum up3 on x œ c1, a local minimum#is c3 at x œ 2, and ˆ "#Î\$ 3 ‰ is a point of8 inflection. The"Î\$ is rising c 1) curve is concave is at # 28. (a) œ #Î\$ ax c 4 œ )Î\$ 4x# ß c 4Ê kw (x) œ 3 &Î\$ c 8 c graph 8(x b 1)(x œ Ê critical points 3 Èx no ). At x c2 c#ß _absoluteœ(#ß _), fallingk(x)c"ß x), concave upb on ˆx" ß _cand concave down on ˆcx " ‰ . 3 x nd concave down on ((c) n (c_ß c1) andextrema ‰ o on ( # # ection 4.4 Concavity and _ß # S Curve Sketching x œ 0, „ 1 Ê kw œ ccc ± bbb )( ccc ± bbb, increasing on (c"ß 123 ("ß _), decreasing !) and Section 4.4 int of inflection. ! c" " 2 2 4.4 CONCAVITY AND at x œ 0, local minima are 0 at x œ „ 2, and Šc È ß 16 ‹ and Š È ß 16 ‹ are points of 2. Local maximum is 4 CURVE SKETCHING and (!ß 1) 39 39 1. (b) (c2ß maximum is k(0) on ( at x œ and (!ß #minima up k „ 1b 2 c3 at inflection. The graph is rising onlocal 0) and (#ß _), falling œ 0c_ß c#)0, local ), concaveare onaŠc_ß œ ‹ and x œ „ 1 1. Local maximum is 3 at x œ c1, a local minimum is c3 at x œ 2, and ˆ " ß c 3 ‰ is a point of inflection. The È3 graph is rising # # 4 (c) no absolute maximum; absolute minimum is c3 at x œ „ 1 2 2 onÈcß _‹,1)nd concave),down ononcc"ß #),2concave up on ˆ " ß _‰ and concave down on ˆc_ß " ‰ . Š ( 3 _ß c a and (#ß _ falling Š ( È3 ß È3 ‹ . # # (d) 2 2 16 2.. Local maximum is 43 at x œ 0, local minima are 0 at x œ „ 2, and points3of 16 ‹ and Š È3Š „ ‹ are \$È% ‹. The graph is 3 Local maximum is 4 at x œ 0, local minima are 0 at x œ „ 1, and Šc È ß inflection at ß 9 È3ß points of 9 % 2 irising on (The !) and is"ß _), falling2ß 0) c_ß(#ß") and (!ß "), concave c#)on Šc!ß #), concave up È3ß c_ß concave down nflection. c"ß graph ( rising on (c on ( and c _), falling on (c_ß up and ( _ß cÈ3‹ and Š on Š _‹, È3 ‹ and 3. Š È _Chapter 4 down on Šc È3 È3 Derivatives ‹ nd ‹. on 124 3ŠßcÈ3,ßaÈ3concaveApplicationsß of‹ . 2 2 2 x c 2)\$ b 1, then yw œ 3(x c 2)# and È 4 .Local maximum is 7 a of 3 9Local maximum is 327at x œ 0, local minima are 0 at x œ27 1, œ points point of inflection atÈ3! \$ % ‹ The graph is 2). The curve never..falls and there &are4noat x œ c1,w a local%minimum is c 7„at xand1and10. inflection at Š „ (!ß ß ).%The. graph is rising on % \$ \$ 21. When y œ x ("ß _ falling on (œ15x c 20x up 5x (x c 4) and œ (c c and c 5x , then y c ß on ( a. The curve is concave _ßon 1)on (cand#),"ß _), falling on"(), concave andon (!ß _), and concave down cÈc_ß !).ŠÈ3ß _‹, concave down rising (\$ c_ß c") (!ß "), concave up on Šc_ß 3‹ and ww down c"ß !) _ß(#) # y œ 20x c 60x œ 20x (x c 3). The curve rises on e up on (#ß _). At x œon ŠcÈ3is a3point 21 È3 2 there È . È È È 1 21 5. (c_ß !)ß and‹(%ß _),b (a)fallsœ c (3 and x# Ê atwx œ œ, 2 c 2x œ 2(1 c x)cÊ 3 a critical1 point3 at x #3 at Ê f w œ bbb ± ccc Local maxima are c 29.and at f(x) œ 2!ß %). 1There is (x) 1 local minima are c 1 x on 2x c 3 b #3 f a local c œ1 3 # 3 3 # at x œ c 3 and . mœ 231 , and points of0, and a local minimum at ), and 4.1 ßTheThe graph is rising on ˆc 1 ß 1 ‰ , falling on ˆc #31 ß c 1 ‰ x aximum at x œ inflection at ˆc 1 ß c 1 ‰ , (!ß ! x œ ˆ # 1 ‰. " # # # 33 3 27 4. Local 1 ßis1concave7 down on1,fß !‰ andminimum local27 up x œ 1and a 1 c 2xof inflection !ß 1!ß. !). The graph is rising on (2) œ # ß 2 a is c 7 at on 1, a urve 23 ‰, concave up œ c 1 a local 0 1Ê ‰ , and concave down on ˆ at 3 c # a local ( ‰ cnd ˆ maximum is at xon ˆc (c_ß 3)ˆand31concavemaximum is point1 ßœ 1 ‰ and ˆ at # minimum is 0 at x œ 2 3 # ((3_ß c1) At x("ß _), falling on absolute inflection. is!ß _),x œ concave down on minimum c ß _). and œ 3 there(b) a point ), concave up on ( 1 at and 1; no absolute (c_ß !). is (c1ß " of maximum 1 6. 9. Local maximum is cÈ3 b c) at x œ 5. 1 , a local minimum is È3 c 43 at 21. 1 , and a point of inflection at (0ß !). The xœ 3 ( 431 1c 3 3 3 1 1 21 5. Local maxima are ˆc231 ßb 1 3 at x œ1c12‰ , and 1 b #ˆc 1x œ ,1concaveminimaˆare1c ,1and concaveœ c 1 on ˆc 1c0‰.3 at graph is rising on c 2 c 3 ‰ and ˆ 3 ß # 3 falling on at3 ß 1 ‰ 3 , local up on 0ß # ‰ 3 c # at x down and 3 2 ß # # 3 3 3 1 1‰ 1‰ % % \$" ˆ1 ˆ1ß 1 ˆ 1 1‰ ˆ #1 x œ 23 y 2 œ When and #xandc 5‰ , then yw œ x c !ß b x(4) # x ‰ The graph c (x b 1)\$ , then yw2. xc3(x, b œpoints of inflection at1 c # ßˆc # ,5(‰ !), and ˆ # #c. 5‰ ˆ # ‰ is rising on c 3 ß 3 , falling on c 3 ß c 3 1) ˆ # # 1 21 1 1‰ 1 21 ‰ 13 ‰ 21 1‰ 7. aLocalxminima\$are c1up x œ c # ß ! and 0 ˆ x œ‰!,, and concave down on ˆc 3„c #and 0 at !ß œ .„ #1, and points of local maxima are 1 at x œ ß # and ˆ x # nd ˆ ß 3 , concave at on ˆ „ # and at ß 3 b 1). The curve [email protected] 5‰ , and yww œ 3 ˆ#x c 5‰# ˆ " ‰ ˆ35x c 15‰ rises3 and 5‰ ˆ 5x c œ ˆ # c there #are 1 1 1 # inflection are (c1ß !) and (1ß !). The graph # rising on#ˆc # ß c # ‰ , ˆ!ß 1 ‰ and ˆ 3# ß #1‰ , falling on ˆc21ß c 3# ‰ , is # rema. The curve is concavex up on\$(ˆ 5_ßÈ 1) x41 ‰# c 3‰ c ˆ 1 4). The curve is rising 41 1 ˆc ˆ !ca5‰ ˆ 1 is c 3 b cup œ cc , local minimum and 3 c at x œ , (c a 0) and ( inflection at (0ß !). The b 1 ‰ nd œ5 (x 6. Localßmaximum ß 1 ‰ , concaveat5x on (c#1ßac1) and (1ß #1),is Èconcave down onand1ß point of!ß 1). È È È È Section 4.4 Concavity and Curve Sketching 231 #3 3 3 3 # # e down on (c"ß _). At x œ# c1 there#ˆ# a is graphc_ß #) on c 1 ß ß _‰ and ˆfallingfalling on ˆc 1There is a up on ˆ0ß 1 ‰ , and concave down on ˆc 1 ß 0‰. on ( is rising and (10 c 1 ), and 1 ß 1 ‰ , on (#ß 10). 3 ß 1 ‰, concave 2 3 3# 3 # 2 lection. È È no extrema. oncave down ection. pter 4 Applications of Derivatives x c3 x c # , then x c 1) and 2) Mathematics I: Homework 19. Extrema: Part I yw œ 2x(x c 2) c ax c 3b (") (xc2) 4)(x c 2) c)Î& c 4x b 3b# (x c 2) c ax 6 c 25 x (x c 2) . œ 2 (x c 2) . e (crising).on (c_ß ") and (\$ß _), and falling on is _ß ! At m. There is is a local maximum at x œ 1 and a (#ß \$). There is concave imum at x œ 3. The curve is concave down on o points of up on (#ß _). There are no points and concave 27. ion because x œ 2 is not in the domain. c x4 x,ct'Î& . yw œ 3x a3x b 1b c x (6x) 3x 25 1 hen b a3x b 1b (c_ß !). At b 1b and 1b m. There is b 6xb a3x b is concave"b c 2 a3x b "b(6x)ˆ3x b 3x ‰ a3x b 1b o " b x) x)(points of . The curve is rising on (c_ß _) so b 1b 35. no local extrema. The curve is concave up on ) and (!ß "), and concave down on (c"ß !) and here are points of inflection at x œ c", x œ 0, 1. Î\$ and ß !) and x# c 1, kxk 1 kx# c 1k œ , then al maximum œ 1 c x# , kxk  1 e kxk  2x,curve is1 2, kxk  " and yww œ œ . The 2x, nok  " c#, kxk  " are kx s0. (c"ß !) and ("ß _) and falls on (c_ß c1) on . There is a local maximum at x œ 0 and local t x œ „ 1. The curve is concave up on (c_ß c1) ), and concave down on (c"ß "). There are no inflection \$Î& c 1‰ y is not differentiable at x œ „ 1 2 œ 2 ˆxcbecause is 0ß 1) and line at those points). ( no tangent local minimum Ú x# c 2x, x  0 he curve is # kx c 2xk œ Û 2x c x# , 0 Ÿ x Ÿ 2 , then ere are no Ü x# c 2x, x  2 0. Ú 2, x  0 x c 2, x  0 ww c 2x, 0  x  2 , and y œ Û c2, 0  x  2 . Ü 2, x  2 x c 2, x  2 e is rising on (!ß 1) and (#ß _), and falling on and ("ß #). There is a local maximum at x œ 1 and ima at x œ 0 and x œ 2. The curve is concave up !) and (#ß _), and concave down on (!ß #). no points of inflection because y is not able at x œ 0 and x œ 2 (so there is no tangent oints). [email protected] ...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online