{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Hypothesis_Testing_-_Two_Population_Proportions-_final

# Hypothesis_Testing_-_Two_Population_Proportions-_final - a...

This preview shows page 1. Sign up to view the full content.

Rej. Region Acceptance Region Rej. Region Rej. Region Acceptance Region Hypothesis Testing-Two Population Proportions A) ONE-TAILED TESTS: Decision Rule: 1)- Upper or Right-Tailed Tests α c < α , Reject H o a α c > α , Do not reject H o or accept H o H o : π 1 ≤ π 2 Z c > Z α , Reject H o and Accept H a H a : π 1 > π 2 Z c < Z α , Do not reject H o or Accept H o α Z c = ( 29 2 1 0 2 1 p p p p - - - σ Z α α c 2)- Lower or Left –Tailed Tests H o : π 1 ≥ π 2 α c < α , Reject H o a H a : π 1 < π 2 α c > α , Do not reject H o or accept H o Z c to left of Z α , Reject H o a Z c to right of Z α , Do not reject H o or accept H o α Z c = ( 29 2 1 0 2 1 p p p p - - - Z α α c B) TWO- TAILED TEST: H o : π 1 = π 2 α c < α/ 2 , Reject H o
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: a H a : π 1 ≠ π 2 α c > α/ 2 , Do not reject H o or accept H o Z c > Zα/ 2 or to left of - Zα/ 2 , Reject H o and Accept H a α Z c = ( 29 2 1 2 1 p p p p----Zα/ 2 ≤ Z c ≤ Zα/ 2 , Do not reject H o or accept H o Z α / 2 α c Acceptance Region Rejection Region α/ 2 Where [ ] +-=-2 1 1 1 ˆ 1 ˆ 2 1 n n P P π Where [ ] +-=-2 1 1 1 ˆ 1 ˆ 2 1 n n P P Where [ ] +-=-2 1 1 1 ˆ 1 ˆ 2 1 n n P P 2 / α Z 2 / Z-Z Z-...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online