13 Characterization theorems

13 Characterization theorems - .7“ 3323?. Ckgyofie:...

Info iconThis preview shows pages 1–5. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
Background image of page 5
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: .7“ 3323?. Ckgyofie: gwhom \rmmm a T’hx, ckwm’kefifiw fixmfim axmfim.,,i.j Aer-Vam'm: Hash Qmfiakék’ij meaiwm. :9 X (EMA Y me, {(6 «Mk Qnfie variance, anti X’rY omé >05!” we. {n$e{;efl$3n* Mn X am; Y QM. “GYM q\. ‘ 7,.» av PM (Semi‘j 5‘; 0631'), mm“ 1mm?“- a WWW m3 “9” 9m'/ You MW Wm «\aamam MEN m, (-vr-wmwwwwm NW. «Rah 533 ‘5", meaning Wed at»; mew-UL (4.33 W van é _: * » rx ”‘ v ,% 5 “93;”? :2 2.31%»; 4, “WI game; mm 3133. ‘ ' I? Hut, ECUHTTQ‘aF a’d‘fi \mkr MAQQEVAée-fli‘, Hm. cnméx‘wder wwx- he, novwmfi (RMMEM‘CA‘ TanVs plausifie. Gl- 616k€\:5 *c“: me. Hm VCJuH‘ kqié: a‘t‘ur' 0%?“ a: ‘Og,w§,;g“ a: we“, 333% CD Ufiwo‘fi if”: g Scrum/“fix CCM‘" KI C X”£>() Y‘ 3 Y ’ KY. Tbevndedb +0 \nowz mean. {3 @ LG (Q be. HAL ckqvackeflsh’c, chk‘om ¥,Y. MM” MY LL x~‘(, {a Q {HY} 4r (x vm m ;e {x w» a may) gt; a E e H x “HLY e: E6” E5” Ea {a H Ea = <9 (My) ((2 (1» {z} ‘fiwgk CNN} (.1? (wk) 7.». «cg; {2%.}, We pmcmé h. Nadia uni: 15;»; «if: n»ng WNW, @ (MU % 0 pm mg "t 6 K. Rem“ “WW who‘s 3% (MA q} 33 wn’k’muflu! M- (3. Thus) 53m Jame, 5L 33* Q . C? (V) 1? 9 Cm if" a, . End ((2 {2&3 :; @(h33gvfih, <50 \iov a“ {2 e L 0.03) (9 (2L) % of). Wu: q; :5. 0 on E” 26!, 23a, , [B3 induuk‘m“, cpl“ :g 0 am, W. ‘ HZ, ‘Noke We»? 31HE) + WEN a WWW). GD M 1m) 2 (Me wan¥ {*0 Shaw “mix {a weak mung @mévax’fc‘ ‘03 (9%)] (QQT) N08 Be mmpgm, bur" H}: V‘m-L Q. as . ‘ ‘ r (we + sazna} Qacafi 'fifimy‘c re, 2: 4'6 _ Ta 1: r {we w x 51mm. 50 e} :2 (e.th Mfi, kg 31: «:4 (tying “HM. 5mm (:«imigaA vam) SO 1% r; (9G) : ‘03 :1 ‘03 Eéitx : \03 (90%) r. IH-t) . "Ms, Mu —-M»t3 = mu .— igm z Zilmag own. NE (“024* h shawl vkhai 'Wu'i {s zero. Le} Q (U z: Mt» ~ “(L-t), Hm. imagifwj W‘ik Tm 6cm 2 Wt) — LIN-2H 2 awn we» ~ {131+th mm = 2%) " 241%) Look: \(‘cc 3 ism. \(ucétg 4:. fiemfi’fing, m r L L $(t\ : 2 1: Vb 2 : %(Z.‘) ‘ J. t I 2" if: Lekkmj hr": 00, HA": converse: h; f ‘ ca (03. So remfig 1:;w Wu” in 45'. Tim S’M 2:: “Wm + 4%) a WWW. :3; c; , "éx 2' «81 £03 E 6: “m0 ' X ‘3'" ZZHW‘LM’ E “axed \wo (902‘ ” = 3L» 9? x I :: 0) b3 gamma gm . ’IL’L 3—25- @ [938cman (8 a0, (2, mad; 73rd) : 2(4%). Pa») 31M) +- “42) = Mm) 4mm a 4M6, 50 LP mpgem: {a ‘09. glistévakcg. anfihmfi (LI abuve , i 1m» 2» 4W0?) = 4WH§~3 =—-- mg ml As ham, «Hm, voHeM mmevjer 1m ,n. WWW... [in > ’4‘“) ‘1‘, km WLLfl : J7: 1F" (0,, awe M one M12?» Wm, WM) = 6- Hum, 15x1." I A \ 1km a: 3—; ogcem ~ ML '65) fl (em (9 V“) w (wmcem «~(ce'H))L “ EUXVQMgig???a;yifiif’ff1jéj Hm ‘‘‘‘‘‘‘‘‘ W CP(H1 .6;ng 'L 1%"(0‘3 1: :Efiwj: .... :3, \ Thus) ’40:) «,2 5,; WMJJ ’ fl t2 ) 50 (pm : exp (big: EXWZL am; 50 X amj Y an: namw’. 7‘1'L Movcm Qamvk Sugvose X aha Y are thf'k C VQ'éyflflQQ‘ ) ané +M‘” Vow CX~Y \X+‘{) .o A C. Mmosk sure. (a . Th1,“ X a“: V om navmaétj Aiawfi’bmiceé. ImasmL flu. Acnsihj 0? (X,‘{) Rc'x'aj‘ e H: 45° (sun‘sev‘ c Lack wis‘z. or a. acafier p‘gsi’ 0e (K,‘() PMVL P13 Tuna? ck q cau‘ven x3 wnrcxx'nah. WA 43%: min? Wu. vaianc? Hm 'K coorvkno‘a \‘s aA— wa’r kayak. IF HA1 mm at QnA 3 out auéepemécn", Hrsz unwilh'mm‘ Wham? (a mnwwzi’, 50 “M. cmxéwfian have is weaker H'mn Idea 09 Hm 91009 Le¥ (Q (i) -. 'C C7, Szchehfi E e‘. Kt L9} "LN-H 5: \03 go“). %m§~ This Q) N n u. 1 We med “m sham “Wow "2,3; (3 “(Swan ms Wm f a“; my .2 «w m “Jam 2 (Mama) .. We mi“ 5W~W No Hm‘uagi 6) 1E; (x~\’)2 e’lmw’ \E Hunt e‘“"”’ «um Shaw was» w“) z - o 74" (t) 5: Q|» "( M So WM‘ X is novmaflj AIM-fihmhé. Te c‘mm' C" (n HM prevéaw Huowm. is «mm-{aw} . QM“ Hm wng we 3w} 31(3- 2 1 2G Cgét‘) I a" : me). — 2 Lqfi'uwm * WWW) . cit Ewfiwmm Wm’r a? m 4- 0, 3L cum am; 7?“ mm. {P them am Pmméf a; Wkw (p m O 4? RA q)(o\ 2!, So (9 (u f 0 new f, 0a ital: {Mean/ah (pm 2 up (545 {r (2,6: m omA HMS Madrsimw 1: End be mum, Hm? wwhi W, 03 9 cyfi‘*\*”fi\k3.fiflf ‘ fi’ 55a rc- we a “M mun; o {for an i. mam; ever 0. h: Co £ Qt " 4162*}, ‘L “6, ,0 fig,” {11) i \d ¢ M) ‘kififlw ORR *kmi" (“H {L 3 N? \> ‘9? NP {1}} 742 3~za~200£ CD varmm as, (sea-m3 m be. m" H51 , mama)". New mxw mm «.1 mx mm A My NW} “*” 3i L)“ Y3 “ “ii W1 “ ‘5'} Cram“ Hiram“)? :2 $533“) 2 0‘ m5, ‘ “z \Immwxxwx Eiaxw)“ \ xm’i. TQVMS Wt exgecfieé quUkl age RAM 3(84239 iecofim'ihxfl thud: fig (90: shit is CK)“; {an}, VQTCX~Y\X+Y) : E mum" : V0,, LK~Y\ ("4 he; mean 0) == Vav 00 + Van‘f) ((nc‘wené‘efiu) ’5" 2,61 This , 1 Euxdfl \K*‘\’} a. 25?. Mu‘kp’ljmj +wxw3k b3 Ebfif‘i‘fi gm: FM 2’ «,Y. in!" .L (XEY‘ Eiflixw‘fl' eff” E 3.319173 =’ 2d: 6t ) Wake, H4 “FNMA Vaiw‘ «a? \Qo’w‘ SCAM {6: 010:“) ~ E U”) Q 2:: 2. a“ g‘fliw) 3: 25‘ m“): (nJemmiema- ~ “LC ‘Y ~ 4‘; Q) E (K-YYe ’“ ‘ : a; (xx 1xY~eV13edU ” 2 i C Mi 2 ‘E (x;zx~{+‘(z "‘ix“()e€Y) aux "1 ~ = W: (“We It 3 - “i M effixm : aux”) " E (ifixwhle «x- H ELXQHSK EH6” A 3' . .. ,. ((PHV (H)! + q c? (it) (p'u) Q5 dame; m ...
View Full Document

This note was uploaded on 01/01/2011 for the course MATHSTAT 741 taught by Professor Zirbel during the Spring '10 term at Bowling Green.

Page1 / 5

13 Characterization theorems - .7“ 3323?. Ckgyofie:...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online