AEM_3e_Chapter_15

AEM_3e_Chapter_15 - 15 15 Integral Transform Method EXERCISES 15.1 Error Function 3 By the rst translation theorem et erf t = 6 We rst compute erf

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
15 15 Integral Transform Method EXERCISES 15.1 Error Function 3. By the frst translation theorem, n e t erF( t ) o = n erF( t ) o ¯ ¯ ¯ ¯ s s 1 = 1 s s +1 ¯ ¯ ¯ ¯ s s 1 = 1 s ( s 1) . 6. We frst compute sinh a s s sinh s = e a s e a s s ( e s e s ) = e ( a 1) s e ( a +1) s s (1 e 2 s ) = e ( a 1) s s h 1+ e 2 s + e 4 s + ··· i e ( a +1) s s h e 2 s + e 4 s + i = e (1 a ) s s + e (3 a ) s s + e (5 a ) s s + # e (1+ a ) s s + e (3+ a ) s s + e (5+ a ) s s + # = X n =0 e (2 n +1 a ) s s e (2 n +1+ a ) s s # . Then ½ sinh a s s sinh s ± = X n =0 ( e (2 n +1 a ) s s ) ( e (2 n +1+ a ) s s )# = X n =0 ² erFc µ 2 n a 2 t erFc µ 2 n +1+ a 2 t ¶¸ = X n =0 µ² 1 erF µ 2 n a 2 t ¶¸ ² 1 erF µ 2 n a 2 t ¶¸¶ = X n =0 ² erF µ 2 n a 2 t erF µ 2 n a 2 t ¶¸ . 9. Z b a e u 2 du = Z 0 a e u 2 du + Z b 0 e u 2 du = Z b 0 e u 2 du Z a 0 e u 2 du = π 2 erF( b ) π 2 erF( a )= π 2 [erF( b ) erF( a )] 255
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
EXERCISES 15.2 Applications of the Laplace Transform 15.2 Applications of the Laplace Transform 3. The solution of a 2 d 2 U dx 2 s 2 U =0 is in this case U ( x, s )= c 1 e ( x/a ) s + c 2 e ( x/a ) s . Since lim x →∞ u ( x, t )=0wehavel im x →∞ U ( x, s )=0.Thus c 2 = 0 and U ( x, s c 1 e ( x/a ) s . If { u (0 ,t ) } = { f ( t ) } = F ( s ) then U (0 ,s F ( s ). From this we have c 1 = F ( s ) and U ( x, s F ( s ) e ( x/a ) s . Hence, by the second translation theorem, u ( x, t f ³ t x a ´³ t x a ´ . 6. Transforming the partial di±erential equation gives d 2 U dx 2 s 2 U = ω s 2 + ω 2 sin πx. Using undetermined coefficients we obtain U ( x, s c 1 cosh sx + c 2 sinh sx + ω ( s 2 + π 2 )( s 2 + ω 2 ) sin πx. The transformed boundary conditions U (0 )=0and U (1 ) = 0 give, in turn, c 1 = 0 and c 2 = 0. Therefore U ( x, s ω ( s 2 + π 2 )( s 2 + ω 2 ) sin πx and u ( x, t ω sin ½ 1 ( s 2 + π 2 )( s 2 + ω 2 ) ± = ω ω 2 π 2 sin ½ 1 π π s 2 + π 2 1 ω ω s 2 + ω 2 ± = ω π ( ω 2 π 2 ) sin πt sin 1 ω 2 π 2 sin ωt sin πx. 9. Transforming the partial di±erential equation gives d 2 U dx 2 s 2 U = sxe x . Using undetermined coefficients we obtain U ( x, s c 1 e sx + c 2 e sx 2 s ( s 2 1) 2 e x + s s 2 1 xe x . The transformed boundary conditions lim x →∞ U ( x, s U (0 ) = 0 give, in turn, c 2 = 0 and 256
Background image of page 2
15.2 Applications of the Laplace Transform c 1 =2 s/ ( s 2 1) 2 . Therefore U ( x, s )= 2 s ( s 2 1) 2 e sx 2 s ( s 2 1) 2 e x + s s 2 1 xe x . From entries (13) and (26) in the Table of Laplace transforms we obtain u ( x, t ½ 2 s ( s 2 1) 2 e sx 2 s ( s 2 1) 2 e x + s s 2 1 xe x ± =2( t x )sinh( t x )( t x ) te x sinh t + xe x cosh t.
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 4
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 01/03/2011 for the course BIS 511 at Yale.

Page1 / 13

AEM_3e_Chapter_15 - 15 15 Integral Transform Method EXERCISES 15.1 Error Function 3 By the rst translation theorem et erf t = 6 We rst compute erf

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online