AEM_3e_Chapter_17

# AEM_3e_Chapter_17 - Part V Complex Analysis 17 Functions of...

This preview shows pages 1–5. Sign up to view the full content.

Part V Complex Analysis 17 17 Functions of a Complex Variable EXERCISES 17.1 Complex Numbers 3. i 8 =( i 2 ) 4 1) 4 =1 6. 3 9 i 9. 11 10 i 12. 2 2 i 15. 2 4 i 3+5 i · 3 5 i 3 5 i = 14 22 i 34 = 7 17 11 17 i 18. 3 i 11 2 i · 11 + 2 i 11 + 2 i = 35 5 i 125 = 7 25 1 25 i 21. (1 + i )(10 + 10 i ) = 10(1 + i ) 2 =20 i 24. (2+3 i )( i ) 2 = 2 3 i 27. x x 2 + y 2 30. 0 33. 2 x +2 yi = 9+2 i implies 2 x = 9 and 2 y = 2. Hence z = 9 2 + i . 36. x 2 y 2 4 x +( 2 xy 4 y ) i =0+0 i implies x 2 y 2 4 x = 0 and y ( 2 x 4) = 0. If y = 0 then x ( x 4) = 0 and so z = 0 and z =4 .If 2 x 4=0or x = 2 then 12 y 2 =0or y = ± 2 3. This gives z = 2+2 3 i and z = 2 2 3 i . 39. | z 1 z 2 | = | ( x 1 x 2 )+ i ( y 1 y 2 ) | = p ( x 1 x 2 ) 2 y 1 y 2 ) 2 which is the distance formula in the plane. 276

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
17.2 Powers and Roots EXERCISES 17.2 Powers and Roots 3. 3 µ cos 3 π 2 + i sin 3 π 2 6. 5 2 µ cos 7 π 4 + i sin 7 π 4 9. 3 2 2 µ cos 5 π 4 + i sin 5 π 4 12. z = 8+8 i 15. z 1 z 2 =8 · cos µ π 8 + 3 π 8 + i sin µ π 8 + 3 π 8 ¶¸ i ; z 1 z 2 = 1 2 · cos µ π 8 3 π 8 + i sin µ π 8 3 π 8 ¶¸ = 2 4 2 4 i 18. h 4 2 ³ cos π 4 + i sin π 4 ´i · 2 µ cos 3 π 4 + i sin 3 π 4 ¶¸ · cos µ π 4 + 3 π 4 + i sin µ π 4 + 3 π 4 ¶¸ = 8 21. 2 9 · cos 9 π 3 + i sin 9 π 3 ¸ = 512 24. (2 2) 4 · cos 8 π 3 + i sin 8 π 3 ¸ = 32+32 3 i 27. 8 1 / 3 =2 · cos 2 3 + i sin 2 3 ¸ , k =0 ,1 ,2 w 0 = 2[cos0 + i sin0] = 2; w 1 · cos 2 π 3 + i sin 2 π 3 ¸ = 1+ 3 i w 2 · cos 4 π 3 + i sin 4 π 3 ¸ = 1 3 i 30. ( i ) 1 / 3 1 / 6 · cos µ π 4 + 2 3 + i sin µ π 4 + 2 3 ¶¸ , k w 0 1 / 6 h cos π 4 + i sin π 4 i = 1 3 2 + 1 3 2 i . 7937 + 0 . 7937 i w 1 1 / 6 · cos 11 π 12 + i sin 11 π 12 ¸ = 1 . 0842 + 0 . 2905 i w 2 1 / 6 · cos 19 π 12 + i sin 19 π 12 ¸ . 2905 1 . 0842 i 33. The solutions are the four fourth roots of 1; w k = cos π +2 4 + i sin π 4 ,k , 1 , 2 , 3 . We have w 1 = cos π 4 + i sin π 4 = 2 2 + 2 2 i w 2 = cos 3 π 4 + i sin 3 π 4 = 2 2 + 2 2 i w 3 = cos 5 π 4 + i sin 5 π 4 = 2 2 2 2 i w 4 = cos 7 π 4 + i sin 7 π 4 = 2 2 2 2 i. 277
17.2 Powers and Roots 36. · 8 µ cos 3 π 8 + i sin 3 π 8 ¶¸ 3 h 2 ³ cos π 16 + i sin π 16 ´i 10 = 2 9 2 10 · cos µ 9 π 8 10 π 16 + i µ 9 π 8 10 π 16 ¶¸ = 1 2 ³ cos π 2 + i sin π 2 ´ = 1 2 i 39. (a) Arg( z 1 )= π , Arg( z 2 π 2 , Arg( z 1 z 2 π 2 , Arg( z 1 ) + Arg( z 2 3 π 2 6 = Arg( z 1 z 2 ) (b) Arg( z 1 /z 2 π 2 , Arg( z 1 ) Arg( z 2 π π 2 = π 2 6 = Arg( z 1 /z 2 ) EXERCISES 17.3 Sets in the Complex Plane 3. 6. 9. 12. 15. 18. 21. 24. | Re( z ) | = | x | is the same as x 2 and | z | = p x 2 + y 2 . Since y 2 0 the inequality x 2 p x 2 + y 2 is true for all complex numbers. 278

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
17.4 Functions of a Complex Variable EXERCISES 17.4 Functions of a Complex Variable 3. x = 0 gives u = y 2 , v = 0. Since y 2 0 for all real values of y , the image is the origin and the negative u -axis.
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 01/03/2011 for the course BIS 511 at Yale.

### Page1 / 9

AEM_3e_Chapter_17 - Part V Complex Analysis 17 Functions of...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online