fluidos-capalimite

fluidos-capalimite - Mecánica de Fluidos Capa Limite y...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Mecánica de Fluidos: Capa Limite y Flujo Externo Compresible INTRODUCCION La teoría de capa limite fue introducida por PRANDTL, esta teoría establece que, para un fluido en movimiento, todas las pedidas por fricción tienen lugar en una delgada capa adyacente al contorno del sólido (llamada capa limite), y que el flujo exterior a dicha capa puede considerarse como carente de viscosidad. En un flujo a altos números de REYNOLDS, los efectos de la viscosidad del fluido y la rotación se confinan en una región relativamente delgada cerca de las superficies sólidas o de las líneas de discontinuidad, tales como las estelas. Como la capa limite es delgada, se puede introducir ciertas simplificaciones en las ecuaciones del movimiento; sin embargo, es necesario retener tanto los términos de esfuerzo (viscoso), como las inerciales (aceleración). Los términos de presión pueden o no estar presentes, dependiendo de la naturaleza del flujo fuera de la capa límite. Como la verticidad del fluido de la capa limite no es cero, no existe función del potencial de velocidades para el flujo en la capa limite. La ecuación del movimiento se debe atacar directamente. Esta ecuación, aun incluyendo las simplificaciones de la capa limite, es mucho mas difícil de resolver que la ecuación de flujo de potencial. Se introducen complicaciones adicionales por el hecho de que el flujo en la capa limite podría ser laminar o turbulento. 1. Capa limite 1.1 Análisis dimensional y parámetros de capa limite La capa limite posee las siguientes características: - Es delgada ( δ <<x) - El espesor de la capa limite aumenta en dirección corriente abajo y siempre el cociente δ /x sigue siendo pequeño. - El perfil de velocidad en la capa limite satisface la condición de no deslizamiento en la pared, y emerge suavemente hasta la velocidad de corriente libre en el borde de la capa. - Existe un esfuerzo cortante en la pared - Las lunes de corriente de flujo en la capa limite son aproximadamente paralelas en la superficie; quiere decir que la velocidad paralela a la superficie es mucho mayor a la normal. Muchos de los parámetros usados en el estudio de capa limite dependen del numero de Reynolds. Se menciona: ) ( 1 X R f x = δ ) ( 2 1 2 2 X oo W F R f V C = = ρ τ ) ( 3 X oo R f V v = υ ρ x V R oo X = Mediante análisis dimensional se obtiene que el cociente del espesor de capa limite entre el desplazamiento sobre la placa (x) es proporcional al inverso de la raíz cuadrada del numero de Reynolds X R x 1 ∝ δ Igualmente el esfuerzo cortante, por conceptos de viscosidad de Newton: dy du W µ τ = Entonces, estará en función de la velocidad y del espesor de la capa limite δ µ τ 00 V W = Despejando δ entonces: x V W 00 3 ρµ τ ∝ El valor de coeficiente de fricción: X oo W F R V C 1 2 1 2 ∝ = ρ τ Para la tercera función, planteamos la ecuación de continuidad: = ∂ ∂ + ∂ ∂ y v x u x V x u x u oo ∝ ∆ ∆ ≈ ∂ ∂ y, δ δ e w e v v v y v x...
View Full Document

This note was uploaded on 01/05/2011 for the course CSU 3 taught by Professor Handsome during the Spring '10 term at CSU Pueblo.

Page1 / 15

fluidos-capalimite - Mecánica de Fluidos Capa Limite y...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online