HF Communications - Chapter 5 HF communications High...

Info iconThis preview shows pages 1–3. Sign up to view the full content.

View Full Document Right Arrow Icon
Chapter 5 HF communications High frequency (HF) radio provides aircraft with an effective means of communication over long distance oceanic and trans-polar routes. In addition, global data communication has recently been made possible using strategically located HF data link (HFDL) ground stations. These provide access to ARINC and SITA airline networks. HF communication is thus no longer restricted to voice and is undergoing a resurgence of interest due to the need to find a means of long distance data communication that will augment existing VHF and SATCOM data links. An aircraft HF radio system operates on spot frequencies within the HF spectrum. Unlike aircraft VHF radio, the spectrum is not divided into a large number of contiguous channels but aircraft allocations are interspersed with many other services, including short wave broadcasting, fixed point-to-point, marine and land-mobile, government and amateur services. This chapter describes the equipment used and the different modes in which it operates. In the HF range (3 MHz to 30 MHz) radio waves propagate over long distances due to reflection from the ionised layers in the upper atmosphere. Due to variations in height and intensities of the ionised regions, different frequencies must be used at different times of day and night and for different paths. There is also some seasonal variation (particularly between winter and summer). Propagation may also be disturbed and enhanced during periods of intense solar activity. The upshot of this is that HF propagation has considerable vagaries and is far less predictable than propagation at VHF. Frequencies chosen for a particular radio path are usually set roughly mid-way between the Figure 5.1 VHF aircraft coverage in the North Atlantic area 5.1 HF range and propagation lowest usable frequency (LUF) and the maximum usable frequency (MUF). The daytime LUF is usually between 4 to 6 MHz during the day, falling rapidly after sunset to around 2 MHz. The MUF is dependent on the season and sunspot cycle but is often between 8 MHz and 20 MHz. Hence a typical daytime frequency for aircraft communication might be 8 MHz whilst this might be as low as 3 MHz during the night. Typical ranges are in the region of 500 km to 2500 km and this effectively fills in the gap in VHF coverage (see Figure 5.1). As an example of the need to change frequencies during a 24-hour period, Figure 5.2
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
74 Aircraft communications and navigation systems Unfortunately, the spectrum available for aircraft communications at HF is extremely limited. As a result, steps are taken to restrict the bandwidth of transmitted signals, for both voice and data. Double sideband (DSB) amplitude modulation requires a bandwidth of at least 7 kHz but this can be reduced by transmitting only one of the two sidebands. Note that either the upper sideband (USB) or the lower sideband (LSB) can be used because they both contain the same modulating signal information. In addition, it is possible to reduce (or ‘suppress’) the carrier as this, in itself,
Background image of page 2
Image of page 3
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 12

HF Communications - Chapter 5 HF communications High...

This preview shows document pages 1 - 3. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online