mares-riemann-sum - Use the midpoint method to estimate 2 x...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
Sheet1 Page 1 variable meaning formula n # of rectangles 10 a left endpoint 0 b right endpoint 2 Δx width of a rectangle (b-a)/n 0.2 i just a label 1 2 3 4 5 6 7 xi Right-side of rectangle #i a + i Δx 0.2 0.4 0.6 0.8 1 1.2 1.4 xi* sample point (midpoint) 0.1 0.3 0.5 0.7 0.9 1.1 1.3 height of rectangle #i f(xi*) 0.01 0.09 0.25 0.49 0.81 1.21 1.69 area of rectangle #i f(xi*) Δx 0 0.02 0.05 0.1 0.16 0.24 0.34 total area Σ f(xi*) Δx 2.6600 Cumulative area of rect's: 0 0.02 0.07 0.17 0.33 0.57 0.91 Above line estimates g(xi): g(xi) Approximate the derivative of g(x): is approximately: 0.01 0.09 0.25 0.49 0.81 1.21 1.69 Compare this line ^^^ with f(xi*
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 2
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Use the midpoint method to estimate 2 x 2 x with ten rectangles ( x i-1 + x i ) / 2 i j=1 f(xj*) x 0.2 x 2 dx 0.6 x 2 dx 1 x 2 dx 1.4 x 2 d xi t 2 dt 0.2 t 2 dt 0.6 t 2 dt 1 t 2 dt 1.4 t 2 dt (g(x i ) g(x i-1 )) / x Sheet1 Page 2 8 9 10 1.6 1.8 2 1.5 1.7 1.9 2.25 2.89 3.61 0.45 0.58 0.72 1.36 1.94 2.66 2.25 2.89 3.61 i*) !!! dx 2 x 2 dx t 2 t 2 dt...
View Full Document

Page1 / 2

mares-riemann-sum - Use the midpoint method to estimate 2 x...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online