{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

# soln1 - EECS 216 SOLUTIONS TO PROBLEM SET#1 Winter 2008 1a...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: EECS 216 SOLUTIONS TO PROBLEM SET #1 Winter 2008 1a. Using voltage divider, H ( jω ) = [1 / ( jωC )] / [ R + jωL +1 / ( jωC )] = 1 / [1 − ω 2 LC + jωRC ] Note: Units or dimensions: every term is dimensionless. This is a good check. 1b. Assume default units. L=1 H,C=1 F,R=0.1Ω → H ( jω ) = 1 / [(1 − ω 2 ) + jω . 1] → | H ( jω ) | = 1 / radicalbig (1 − ω 2 ) 2 + ω 2 / 100 and negationslash H ( jω ) = tan − 1 ω/ 100 1 − ω 2 But: Add π to phase if | ω | > 1. IF you had any trouble with this, retake EECS 215! Matlab: W=linspace(0,2);subplot(421),plot(W,abs(1./(1-W. ˆ 2+j*W/10))) subplot(422),plot(W,angle(1./(1-W. ˆ 2+j*W/10))) if have no sig. proc. toolbox. 2a. 3 − 4 j = 5 e − j. 927 = 5 negationslash − . 927. Also: 12 + j 5 = 13 negationslash . 395 (not required). 2b. [(3 − 4 j ) + (12 − 5 j )] 2 = (15 − 9 j ) 2 = 225 − 81 − 2 j 15 · 9 = 144 − 270 j = 306 negationslash − 1 . 081 2c....
View Full Document

{[ snackBarMessage ]}

### Page1 / 2

soln1 - EECS 216 SOLUTIONS TO PROBLEM SET#1 Winter 2008 1a...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online