trigonometry

# trigonometry - A mathematics PowerPoint by Eric Zhao...

This preview shows pages 1–6. Sign up to view the full content.

A mathematics PowerPoint by Eric Zhao

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Trigonometry is the study and solution of Triangles. Solving a triangle means finding the value of each of its sides and angles. The following terminology and tactics will be important in the solving of triangles. Pythagorean Theorem (a 2 +b 2 =c 2 ). Only for right angle triangles Sine (sin), Cosecant (csc or sin -1 ) Cosine (cos), Secant (sec or cos -1 ) Tangent (tan), Cotangent (cot or tan -1 ) Right/Oblique triangle

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
A trigonometric function is a ratio of certain parts of a triangle. The names of these ratios are: The sine, cosine, tangent, cosecant, secant, cotangent. Let us look at this triangle… a c b ө A B C Given the assigned letters to the sides and angles, we can determine the following trigonometric functions. The Cosecant is the inversion of the sine, the secant is the inversion of the cosine, the cotangent is the inversion of the tangent. With this, we can find the sine of the value of angle A by dividing side a by side c. In order to find the angle itself, we must take the sine of the angle and invert it (in other words, find the cosecant of the sine of the angle). Sinθ= Cos θ= Tan θ= Side Opposite Side Adjacent Side Adjacent Side Opposite Hypothenuse Hypothenuse = = = a b c a b c
Try finding the angles of the following triangle from the side lengths using the trigonometric ratios from the previous slide. 6 10 8 θ A B C α β Click for the Answer… The first step is to use the trigonometric functions on angle A.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern