Chiang_Ch5a (1)

Chiang_Ch5a (1) - Ch. 5a Linear Models & Matrix Algebra 5.1...

This preview shows pages 1–7. Sign up to view the full content.

Ch. 5a Linear Models & Matrix Algebra Ch. 5a Linear Models & Matrix Algebra 5.1 Conditions for Nonsingularity of a Matrix 5.2 Test of Nonsingularity by Use of Determinant 5.3 Basic Properties of Determinants 5.4 Finding the Inverse Matrix 1 Ch. 5a Linear Models and Matrix Algebra 5.1 - 5.4

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
5.1 5.1 Conditions for Nonsingularity of a Matrix Conditions for Nonsingularity of a Matrix 3.4  3.4  Solution of a General-equilibrium System (p. 44) Solution of a General-equilibrium System (p. 44) x + y = 8 x + y = 9 (inconsistent & dependent) 2x + y = 12 4x + 2y= 24 (dependent) 2x + 3y = 58 y = 18 x + y = 20 (over identified & dependent) = 9 8 1 1 1 1 y x = 24 12 2 4 1 2 y x 2 = 20 18 58 1 1 1 0 3 2 y x Ch. 5a Linear Models and Matrix Algebra 5.1 - 5.4
5.1 5.1 Conditions for Non-singularity of a Matrix Conditions for Non-singularity of a Matrix 3.4  3.4  Solution of a General-equilibrium System (p. 44) Solution of a General-equilibrium System (p. 44) Sometimes equations are not consistent, and they produce two parallel lines. (contradict) Sometimes one equation is a multiple of the other. (redundant) 3 y x x + y = 9 x + y = 8 y 12 For both the equations Slope is -1 Ch. 5a Linear Models and Matrix Algebra 5.1 - 5.4

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
5.1 Conditions for Non-singularity of a Matrix 5.1 Conditions for Non-singularity of a Matrix Necessary versus sufficient conditions Necessary versus sufficient conditions Conditions for non-singularity Conditions for non-singularity Rank of a matrix Rank of a matrix A) Square matrix , i.e., n. equations = n. unknowns. Then we may have unique solution. (nxn , necessary) B) Rows (cols.) linearly independent (rank=n, sufficient) A & B (nxn, rank=n) (necessary & sufficient), then nonsingular 4 Ch. 5a Linear Models and Matrix Algebra 5.1 - 5.4
5.1 Elementary Row Operations 5.1 Elementary Row Operations (p. (p. 86) 86) Interchange any two rows in a matrix Multiply or divide any row by a scalar k (k 0) Addition of k times any row to another row These operations will: transform a matrix into a reduced echelon matrix (or identity matrix if possible) not alter the rank of the matrix place all non-zero rows before the zero rows in which non-zero rows reveal the rank 5 Ch. 5a Linear Models and Matrix Algebra 5.1 - 5.4

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
5.1 5.1 Conditions for Nonsingularity of a Matrix Conditions for Nonsingularity of a Matrix Conditions for non-singularity, Rank of a matrix (p. 86) Conditions for non-singularity, Rank of a matrix (p. 86) 6 - - + - - - - - - + - - - - -  - - 1 2 1 11 1 11 2 0 4 1 0 0 0 0 0 11 4 1 0 0 4 1 1 11 * 0 0 1 11 1 11 2 0 4 1 0 0 4 11 0 11 4 1 0 0 4 1 1 11 2 * 0 0
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 01/12/2011 for the course MAT 116 A MAT 116 A taught by Professor Hawkins during the Spring '10 term at University of Phoenix.

Page1 / 33

Chiang_Ch5a (1) - Ch. 5a Linear Models & Matrix Algebra 5.1...

This preview shows document pages 1 - 7. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online