LinearAlgebra03FallLetureNotes01

LinearAlgebra03FallLetureNotes01 - HowardAnton ChrisRorres...

Info icon This preview shows pages 1–8. Sign up to view the full content.

View Full Document Right Arrow Icon
    Elementary Linear Algebra Howard Anton  Chris Rorres
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
    Chapter Contents 1.1 Introduction to  System of Linear           Equations 1.2 Gaussian Elimination 1.3 Matrices and Matrix Operations 1.4 Inverses; Rules of Matrix Arithmetic 1.5 Elementary Matrices and a Method for           Finding 1.6 Further Results on Systems of Equations           and Invertibility 1.7 Diagonal, Triangular, and Symmetric           Matrices  1 - A
Image of page 2
    1.1 Introduction to Systems of Equations
Image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
    Linear Equations Any straight line in xy-plane can be  represented algebraically by an equation of  the form: General form: define a  linear equation  in the  n   variables                   : Where                        and b are real constants. The variables in a linear equation are sometimes          called  unknowns .      b y a x a = + 2 1 n x x x ,..., , 2 1 b x a x a x a n n = + + + ... 2 2 1 1 , ,..., , 2 1 n a a a
Image of page 4
    Example 1 Linear Equations The equations                                      and                               are linear.    Observe that a linear equation does not involve any  products or roots of variables. All variables occur only to  the first power and do not appear as arguments for  trigonometric, logarithmic, or exponential functions.  The equations      are  not  linear. solution  of a linear equation is a sequence of n numbers                                                   such that the equation is satisfied. The set of  all solutions of the equation is called its  solution set  or  general solution  of the equation , 1 3 2 1 , 7 3 + + = = + z x y y x 7 3 2 4 3 2 1 = + - - x x x x x y xz z y x y x sin and , 4 2 3 , 5 3 = = + - + = + n s s s ,..., , 2 1
Image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
    Example 2 Finding a Solution Set (1/2) Find the solution of Solution(a)       we can assign an arbitrary value to x and solve for y ,  or choose an arbitrary value for y and solve for x .If we  follow the first approach and assign x an arbitrary  value ,we obtain                      arbitrary numbers          are called   parameter . for example  1 2 4 ) a ( = - y x 2 2 1 1 , 4 1 2 1 or 2 1 2 , t y t x t y t x = + = - = = 2 , 1 t t 2 11 as 2 11 , 3 solution the yields 3 2 1 = = = = t y x t
Image of page 6
    Example 2 Finding a Solution Set (2/2) Find the solution of Solution(b)       we can assign arbitrary values to any two  variables and solve for the third variable.
Image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 8
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern