Le26-27 - ME 200: Thermodynamics I Lecture 26: T-dS...

Info iconThis preview shows pages 1–8. Sign up to view the full content.

View Full Document Right Arrow Icon
ME 200: Thermodynamics I Lecture 26: T-dS relations, Entropy changes for incompressible substances Reading: Sections 6.3, 6.4; SP26, 6.11, 6.17 Lecture 27: Entropy change for ideal gases Reading: Section 6.5; SP27, 6.27, 6.29 10/29/2010 1 ME200 Therm I Lectures 26-27, Prof. Mongia Professor Hukam Mongia Office Hours: MWF 9:30 to 10:30 AM in ME 83 Other times email for appointment; Phone: 765-494-5640 Course Website: https://engineering.purdue.edu/ME200/ Course Secretaries: Diana Akers (ME 84) and Marilyn Morrison (ME 100) Grader: Abhro Pal , abhro.pal@gmail.com
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Introducing the T dS Equations 2 10/29/2010 () exp ? . rev Canwe doitthro Q Calculating d ughsome simple irectly dS is r re hard T ssions int int : ( ) ( ) : rev rev Firstlaw dU Q W d First T dS rela U TdS pdV tion TdS dU pdV    se ] c ( [ . ) h U pV dh dU d pV dU pdV Vdp TdS TdS dh Vdp on Vdp d TdS relation
Background image of page 2
10/29/2010 ME200 Therm I Lectures 26-27, Prof. Mongia 3 : Per unit molar mass Tds du pdv Tds dh vdp   : Per unit mass Tds du pdv Tds dh vdp 2 21 1 1 1 2 2 () tan ( ) l 0 , n . Tds du pdv For fluid dv du c T dT ds givi incompress ng TT ible c T dT ss T cons t c T s s c T For c we get T 
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
10/29/2010 ME200 Therm I Lectures 26-27, Prof. Mongia 4 , tan . exp 0 vapor fluid evap evap During phase change fromsaturated liquid to saturated vapor T and p arecons t In Tds dh v hh dp ression T dp s
Background image of page 4
Entropy Change of an Ideal Gas Re : arrange Tds du pdv and Tds dh vdp to du ds dv T dh ds dp T p T v T   : Useideal equation of state pv RT to substitute p T v R v R T p
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
10/29/2010 6 2 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 ( , ) ( , ) ln ( , ) () ( , ) ln ( ) ( ) v p p v dT c v du dv dh dp ds R an s T v s T v R v p s T p d ds R T v T p dT dv dT dp ds c T R and ds c s T p R p TR T v T p T T dT cT T   2 1 ( ) ( ( ) sin ( ) ( ) . 22 2 ) 2. ref T o p v p p T dT s dT We need to computeonly c T ce c T c T R T is t Tc abulated in A and A E for ai T T r
Background image of page 6
10/29/2010 ME200 Therm I Lectures 26-27, Prof.
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 8
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 01/13/2011 for the course ME 200 taught by Professor Gal during the Fall '08 term at Purdue University-West Lafayette.

Page1 / 27

Le26-27 - ME 200: Thermodynamics I Lecture 26: T-dS...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online