exam_2_solution_alex

# Exam_2_solution_alex - ‘ l I 1 g I l f" v ‘ ‘ E Each?n>‘o\em is i 2 Dynamics'53 pts max EGN 3321 Section 4 C*‘ Pt be u us Exam 2

This preview shows pages 1–8. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ‘ , l I 1 g I _ ( l ) f /,." v ‘ ‘ E \ Each ?n>‘o\em is _ i 2 Dynamics '53 pts max EGN 3321 Section 4 Feb 27, 2001 C *‘ Pt be u us) Exam 2 Name: 0 Social Security or Student Number: a nd 1. The spring has a stiffness of k = 100 N/ and an unstretched length of 1 meters. As shown, it is conﬁned by the plate the wall using cables so that its length is at”? 0.5 meters: A 4 kg block is given an initial speed vA= 5 m/s when it is at A, and it 3,4 slides down the incline having a coefﬁcient of kinetic friction 11150.2. If it strikes b, {\rv the plate and pushes it forward 0.25 meters before stopping, determine the $3) q rebound length, 5. Neglect the mass of the plate and spring. E“ ’\\ «M S \ xiv ’5 e given: 31-2: ' H‘VZUSY; ‘. €- Ut-n. '= 6+G+G> Nantes.- @ ii": *3 L; B (Wazﬁrmhﬁ = «my» h \n. 0. 25+ 6 h =0. \06? ‘TOJ-tZZé-VS sings); @ :- ’H‘qlm‘(O.1054+O-QQ26'6> : (“*- Héﬂe. 59,3 6» Z><Uxe2>swkm$1 a: k$T_Jik(SZZ §‘= [\‘Xu 1 =‘OH‘S'M @ :2 550003 (‘0}5)2_g: boo) (—0 g)? 32 = 12 'JL‘H . = 0.5 " : '5.$Z£_§' (N0‘\€‘- M $FT§ﬁg : -—O,S SIDPS Cd: <35 8 5) (UszﬁLﬁm-a —$.01 d: dis‘wma; ' ‘ = o.25+e 0'3 74 ‘ (Mn; N)‘ 0Q ‘ ~ 0 ) Ls) : =a0.2' ‘l ﬁﬂstbﬂ-Razs-rsl 3C :: -|.—:|-:F% "' 7.\\3'$N K) ZUI—vzto hm Prev. ank «KEN-3‘0 O :. 0:6H"[email protected]?3' ﬁ> + N : wtosuﬁ) 8 + ‘5-625‘ +(—~\.Hg~1.n5.5) oza.}o\~13.co%s upkf’az o‘aogm! “Marxch sum=o, o 068;be 3 ' “ncdl Omsbﬁv. ,7 3 ﬂaive/‘k 9—7 9:1,"- : u?’ AL"? 9' “ OA/‘mdityon TﬁV‘ ~ TS‘VV5'+ \0558$ v‘ﬁvg’ o (a) 094W Q TIA '2. _ _\ Z__ / GD ‘2mv“2(\(53"5b 3;: h: @[email protected] = mahl: 0 26%) 6m(2‘5 '—‘ 3;: = Wits} W“ “F5 5“”(E) :: \.'Zé>%m / T :O ‘U = For “M093? i m f? @ 5 ( 5 0) 3s wkm (#625) ESSAJ’LtLogoz-K _ earn: 2.+L @@ V5 ‘ “‘35: ~ 49.8.!- [s-smpsﬂ Tu ‘r v.: ‘1 = \Co.‘$8'-t-$ Ts” ‘1 L. n C’s: 9: O osses— {asses duo. +0 fricﬁbﬂ 507:: \d 2‘ = JC'(dY$'t6mCL “traveled? gm H5) diﬁt. “(TWzﬂ 2 5+ o.26‘+o.26‘+6 =35+s ‘:= 0.24 H '0le ~ Cosby) = 1mst GD L05$ES : 1HB~(35+6) = 2LL8C§+11H3~S ’PM ~ . 6: UW$Mb 399 af bP 3 soWQ @ T\—VV\ :TS‘VVS‘V \OaﬁéS k5.) i g t; j 2. Two smooth disks A and B, having a mass of 1kg and 2kg respectively, collide ; - with the velocities shown in the ﬁgure. If the coefﬁcient of restitution for he disks is e = 0.75, determine the x and y components of the ﬁnal velocity of each , disk just aﬁer collision. l Given: mp‘ : \wis 5) (Vex: \m/é m g ; 1 I. 4) = 3)in(30 A » A a 3) 4A Wmsmfeoﬁz . Em? A , 4k , 230° ‘ ' _\YI.2. o (1)?) = '1‘ [03398) n +%\n(qs)’c] q ‘qud: (,UA) 2 3 m B 8 = 0"}5‘ ' s . (Em. (U ’ l l / Flam. c ' RX wk '1) ‘ 'U Q Con 'Lact 7 3 \ 8x > 53 D :9va 1m ﬁaJL melt) cribﬂs 2* A _ _ )\ -—‘ {J UA’2.bC.)<5 v» -’r \,6l:, "DB: —0.?o=+?\1, -0313}? y M: :Deg" 0"7—07-m/SL C4D de‘mcﬁbn 0i i Uwa MOWﬁMRK 4; "kaﬂﬁmdwaﬂ‘ = MA 'UA/x 4"mgvéx (ZSWM 2-(-o.=tz>1)= \- bA’x +2418; [ma :vNQ +2qge>l< (ago I / / l / (uhx 'QJA/ ‘ 714x " Vex . I ( J ' 03$: WW “UM \ 25634-03013 I . (Dex ﬁnk): = ORS’ (2,598+030’ﬂ ipax’~vA; = .232 84”) z_ I I < '2 @v "/5, 2W2énmdn659 30“: (gm 794x DVBX <:> '(UA; : /.Zénvg ‘?—- I {UBX = /.22 0/5 —---v anémer I . r 5 " gwen (0,43 : L’s M/3 f (“Wag M: 2+; hmchtZ W+H I - ’Ugg ~ 0.3}07‘l “WHAng 6.: amm: 2 3. In a game of billiards, ball A is given an initial velocity v0 of magnitude v0 = 3 ; m/s along line DA parallel to the axis of the table. It hits ball B and then ball "C, which are both at rest. Knowing that A and C hit the sides of the table squarely at points A’ and C’, respectively, that B hits the side obliquely at B’, and assuming g frictionless surfaces and perfectly elastic impacts, determine the velocities VA, VB, and vc with which the balls hit the sides of the table. Assume all balls have equal f mass and that the balls are moving freely on a horizontal plane). 0.5m 2,5,”,x 0.5m C f? A‘ ‘ T5 \/ Sweat) 1, l I '} 3 ._. c 02: \ 2‘ l ’00: —3*\ C. x \ ‘ ___‘ IL \m i \\A7:___3:‘.__"‘D @ 3A-(U5’6' I WV. ‘ A l ' v5/‘B Al ‘ 10.5w) “5“ 'UGX ' i ” BI A ‘~ ’UA i I/ O (—6 .4 J 2m e > ‘Dc / 1+3 sz 2-m ch no ng (tool-la crutckecQ *0 a 4:940. \e 3% : ‘DGX .M' ' M S‘W; Z 3 l3 -- W + vex 30 B ‘ii’éi‘fi‘iaili ﬁL’L‘b H.=H7 : ZA-(p V“) %E L ‘ Ti*‘i:;z¥“zs§ (. . \3 - Lz%_ ) Llj-O >Lz~gr~mV8 meA 1+?) D __ yr<v V47) 3 A 3 A3 “*3 “0% (23 2} Can sevkmkﬁﬂl 08 a 8 (sweat WM momentum/L bO'H‘Dm \Q coCAQJ» as 71er (,4 “A (Hf—"4») H ‘ )0 2 ( H230 U Uh‘momﬁs: IDA“ BUBX 37965 ) max :2) L‘ um Knon05 I ‘ Liv-05 H 8 eff. 3 Mﬂkwowos :ﬁ ‘ mach/usan a, ’ M @ .az m 1’7 W’yi’i’fiﬁgk vemtﬂ answer‘- ...
View Full Document

## This note was uploaded on 01/13/2011 for the course MMAE 0L02 taught by Professor Irinaionescu during the Fall '02 term at University of Central Florida.

### Page1 / 8

Exam_2_solution_alex - ‘ l I 1 g I l f" v ‘ ‘ E Each?n>‘o\em is i 2 Dynamics'53 pts max EGN 3321 Section 4 C*‘ Pt be u us Exam 2

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online