This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: f2 =0.1600 >> f3 = (.31  2*.29 + 2*.19  0)/(2*(.5^3)) f3 = 0.4400 >> f4 = (.31  4*.29 + 6*.26  4*.19 + 0)/((.5)^4) f4 =0.8000 27.2) We are given the following matrix and asked to use it to find approximations of certain partial derivates: U = 5.1000 6.5000 7.5000 8.1000 8.4000 5.5000 6.8000 7.8000 8.3000 8.9000 5.5000 6.9000 9.0000 8.4000 9.1000 5.4000 9.6000 9.1000 8.6000 9.4000 ux(x2, y4): >> ux1 = (1/(2*h))*(U(3,4)  U(1,4)) ux1 = 1.5000 uxx(x3, y2): >> uxx1 = (1/(h^2))*(U(4,2)  2*U(3,2) + U(2,2)) uxx1 = 260.0000 uyy(x3,y2): >> uyy1 = (1/(k^2))*(U(3,3)  2*U(3,2) + U(3,1)) uyy1 = 2.8000 uxy(x2, y3): >> uxy1 = (1/(4*h*k))*(U(3,4)  U(3,2)  U(1,4) + U(1,2)) uxy1 =0.5000...
View
Full Document
 Spring '08
 Staff
 Numerical Analysis, Ben, central difference approximation, following MatLab results, certain partial derivates, following mat rix

Click to edit the document details