{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Question1 23-10

# Question1 23-10 - ECO 310 Fall 2008 Microeconomic Theory A...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: ECO 310 - Fall 2008 Microeconomic Theory - A Mathematical Approach midterm 10/23 - Answer Key Question 1: (a)(10 points) L ( x;y;& ) = ( x & x )( y & y ) + & ( I & P x x & P y y ) FONCS: y & y = &P x x & x = &P y This implies that y & y x & x = P x P y . Substitute y = y + P x P y ( x & x ) into the budget constraint, we have x = I & P y y + P x x 2 P x ;y = I + P y y & P x x 2 P y Since I ¡ P x x + P y y , x ¡ x and y ¡ y . (b)(5 points)By the duality between the utility maximization and cost minimization problems, we get the same relationship between y and x from the &rst order conditions. Substitute y into ( x & x )( y & y ) = u , we have x c = r uP y P x + x ;y c = y + s uP x P y (c)(10 points)We need to verify the equation dx c dP y = dx dP y + y dx dI dx c dP y = 1 2 q u P x P y , dx dP y = & y 2 P x , dx dI = 1 2 P x , so RHS = y & y 2 P x = I & P x y & P x x 4 P x P y . By I = e ( P;u ) = P x x c + P y y c , we have I = P x x + P y y + 2 p uP x P y . Substitute I into RHS, we get RHS...
View Full Document

{[ snackBarMessage ]}

Ask a homework question - tutors are online