sfinsol

# sfinsol - w 1 Find all the local minimizerg of the function...

This preview shows pages 1–10. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: w 1. Find all the local minimizerg of the function 1 f(2;1, .752) : (5131 W :2- .L2 )2 + 13:3 w- 3:52 aria. demonstrate that they satisfy the sufficient condétéens presenteﬁ in the 63388. 2:29 :3 5:} ﬁn Hi. 6, \E '3 m 222 2‘ 22:4 2}; '3'“ ’ § “ i’ ; . 4 7 W} 5’ ‘ w Mi: ”‘- 2‘?! WM 52 , k j} , "v“: M” ”’2: (“.4 24 1 g X g; Q . (":1 w W ‘53 9% ,2 3) 5p f“ gig 313% 53/?“ m 2; w s g = in , E f i ; s/ 3 Q 5 V i - m ‘ .5 é 259,1} {2;} V j _ é gig/Q i L <3 5 3 sir" f ; _»~ r ”3 _ E g x: r g Q a 5s {Mg M g ; r1 “’5. ﬂ»? E °“ g2 a“ 3 g, j 5%aﬂ;{ M ”3 w? 2:52 {)4- § 3? , i 5 WW”? (:3; In ,7 g« \i g g 3 4 A f ”“5 5 T ‘5 ' 23f 2 2‘5 2g; 2’2 52 WE; “if? 2: L ' U“ § 5 kg? W -w i {7 éﬁ ‘2? W' i’ 32 {A f g ~ g V“- 5 -' £2222 {3? J 7,1}2 {ff/kg“, f; ; J g ‘ 5 - W5. g 5 £33 ﬁg 53 {imgéﬁ Ema ,5 u ‘3, Show that (—2/11) 6/11, —2/11)T is a local minimize: for the problem Minimize ﬂat) 2 f{:£1,x2, 3:3) 2 mg ~i~ \$3 + \$3 subject. to 0 2 2x1+ (£2 +\$3 ”£1 "E‘ 3332 ~ \$3 I! H by demonstrating that (—2/ 11,6/11, ——2 / 11V satisﬁes the sufﬁcient conditions pre— Sented m the cauz‘se. EMA : (-i +~é_-.§:.. To j§>+égféf> (1:)“u—i§\_:;\ ....._.: ' '22] I; f / f9} Vim: 9% xii/31% 3 *2] P; “:[O "1 o. o - 0 02 a] Puﬂa’x‘ﬂe Jﬂcﬁm’éw I0 a a 0 gTvﬂf’Q) Z :1 Wm, sing Newton’s method to ﬁnd the stationary points of 3 2 m2\$1W\$'12’I22“1/' (”1/2, 1/2)T. Caicuiate i; in fraction foam. we start with 5130 if,“ m sfféax 3.35.53; aiw may , w izfx 3% Q 1;? _ 2D/ "\m Q. ‘55:. «f. M Q 3 % \$321.3: Wm wig 3:} V yam. rfiiiiw k 3% 3w Hing n3» 5: VA? 3H? J ,VAz W W H? W ________ 5i, réﬁgéx §§§§§ Z M m M Q 5 r3551» M w M; fffff 13, Etc] 3!“ E W i Airfk. .11.. Ex Q 5, «35:53 1 W 4.? wz w; W \335} i xw z? i ﬂ is A "5 4,23 U? «JV W? M. 1‘95} _______ gigv Nam is”; 7. x33; M 1.541% 335% EM ” «Em \EE;; 5 .W a}: 3 VA 3.1. 313 a“; Eigéiéig ,2? . 3%. m. l S? 33% ®§;§,§E,E}J h; a n V ,,,,,,,,, giggly 2 aaaaaaaaaaaaa 92/ a w? W ﬁr 4,!va Exam; M ,,,,,,,,,,,,,,,,,,,, 21.3.» W Mzeézziiuieié 3R w §§§§§§§ 511V m w 4. Show thai (1, 1)? is a. local minimizer for {he probiem Minimize ﬁx) 2 f(a:1,1:2) m :5? + 23:; -— 371322 subjec: to {fivjfﬁmi 371+372‘ Z 2 is}: "X; “if“ ﬁgmtﬁ“ cagii’24a x2 2 31 {a} :2 ”ﬁg’+ X; fw’ygémgé, :17!) < 2 ” ‘ ‘ '- : d W 353:2} 7-7 “Kg“! “3% {:5 <2 by demonstrating that (3. NT saiisﬁes the suﬁicient conditions presented in the course. r; g ”m ,1; f? m 5 if f. g m 5” x 504% M 322 ‘ f; H 5W; ; g kg Tow r 3 g ” ‘ ; .4 o a 1 i _ g Hémwgg g is? ”’5 i 23 g“.— “e ‘15} r“? ~» ~ é-‘s y - J“; M, {:3 a W E ‘ g f ”5 g S E M E2“; £12," m g g 5 ”J g}: 2 A x f g a a, § } r?” ‘ "i E m ,3 w; ﬁﬁtra; {MAE/51;} / ﬁx , f , ﬁg}; “"5 7'93 “5""? A w {’3 if] g; if E” g? f E - E g ’~ , e“ * s 3‘1; m » g g :g ﬁovxw‘ﬂiéxiww S «m {g g i f/ g W; i 5. Cousider the canonical form linear programming probiem Minimize z : z(\$) :2“ CT}? subject to Am 2 b, a: 3 0 and its dual canonicai form problem Maximize w : 10(1)) : bTy su‘bject t0 .4713; g (:7 y 2 0. Prove that if x aad y are feasﬁoie soiutéons to tile given pmbiem and its {Ema}, re— spectively, then u{y) 5 3(1‘) You Should assume any properites of matrices that you need. Be sure to indicate how and Where you make use of the facts that :1: 2 {3 and 3! Z 0. 5"? k? ' a M f x A . {f g. 1/ 6}]- is a local minimizer for the problem 31:1 + :52 + :33 1/6, f(\$1;132aﬂ73) subject to 6. Show that («~— 2/3: Minimize f(:r:) Mg} «2;; E 7M §§§§§§§ 3% «Kiss 2: M. «fa ”xx/ﬂaw ZJ/ m5 am; .3 . Wy/{w «xii: “(252% A x E? En, {a a“ X»? a a. a 2,. a; f g Q”... w ,W, : as» Q 6... 5 i; 29. I . s w, m g 1: 79 : Ca ,. fa ,ﬁé if: , \ 3:5: I... 7 m X5 \xﬂa by; «V g U WM, 2%.: wéﬁﬁia _ is m a. fi 5% 3;; a, R ,, . m. G a m p 2, i % £5 X .9, 0 six“, E E K? M iv , . 53 57?: ﬂ 2 O m {.51 RE? a Q \1 View, . 3m; 5, as w. x. a T; g, w. m mg: a, a E : E , ,,,,,,, \$§ 77777 a E .4 a. g u ﬁg? VA. Q my Q & cum/M if fwm 55 Wésiiwxw .v C3 : m2.” (mi. \1} EV M i m 4‘ l m grezfgiiiL VM: 9; gig & 7 J 7 g . X g 2: gig 5 E 3. it ,3 35.3%? m m m w .X 4552.312; X 3. g, Q 9 1A, w 3% . 2 ffék A, (M3 Q 72 a 2m. 3 3 23 mV} 1 g: ,3}! .M VW 9/”; fwgfg Jami x x ,6; :5 23% E 3 ,3 E r s an 5 f6 5% «w + + 1 w r x. Z X X f: 1?}. 5;: Q ,1“ :p 5% m. 2% z i 2, a. a? 3., a? a a. , Mg x, + + mm: M33; W R aw \zﬁ rm”, w m 3.5 {m K 1 3. 1... 5% Q g E, 1 a; 2 y, g 4.“, m r. x . .x E. W . if: I . a f 3 w .5. A? m,“ 3 3 ii A...» U a g 6 i W; y, kw a. M. W w. W g Q 3 5.. 5 WW a... g s g, g g 3...... E v a. a m .9 : ~ if . «(a \2! 3: a , k ,,,,,,,,,, 55;; h : xiv M HM .w . f A}; mi! Q 5%.. i, ﬁ§e m . 3? /§ 4;. M M m 3 ,,,,,, A, W ,,,,, -. Mo % sﬁzhv 3 z 2? 7} a1 v W x352 a W: a, 23?» r m s 21!; . ﬁns... a . a. .n zzzzz m M M VAN: .pz. ............ w 13.: 3k . {WW ”m c 7% ;;;;;;; g5 ﬂ \ w , 5.. mm; X .H w ‘ .1 ,9 {b 1w . 2a ”A. I. imp“ g m. m t H _ ”xv/f; WWW; WML W O m ﬁg \if... 13,; «:3 MW» § r!» {em w 7m i A E... 5. “ a m m d K i f. X as}, 3 m i g i n m g X 5 a} m. 2... x g 5%; . ,1 Q If; 2/... \$13 :5, 5%? J :% 7., PL “”53. 122mg ”Xv waif; rim ”H35“? em 7. Consiqier the problem ‘ : n I 'r ‘ W 1 :3 , 2 Minimize f(3:1,232; 3:3) —— .131 —~ \$3932 +~ 1:3 subject :0 (a) Find a basis 111111 space matrix Z for the constraint matrix A of this probiem. {1, m1, if“, ﬁnd 3) am} A Each that (b) F0: :2: WM) = 22; + ATA ﬁg: MW; 3 m.“ «in. a, A? 3; ﬁﬂ Téaégegissiﬁiz Wig in Au, m AV .3 5 3p” .y ¥é5i§§z§§§f§z§zm a: :5 a. M 3 rigiifi; L w: .1332 3.! grafts; M iii} ii 3% may négfféis: m; £35... :2 s- 1m E» «5% Tigsggé Taggéaséj 3m 3: é : «a g: er§§§s @ 3a 3m, ﬁéﬂ 5 + 5. 4 . aim; a}; . Egg .2; am 3% as ERA. / 4: 1w 35. W 73, x195!) a? w M 25:; .3 3% a 3.. {hi Mi ﬁr K/ 2 «am. 3 fizx e? 32 3U «13A: ﬂ m" 3.5% 33A“: M ET 316 rji r M w m m m, W m W if; "yaw mg 2% £3 Ma {2 1 3w “2% WK {Mi REM, «\i/ «fan, 3%“ + Q 4p Asa, g + ,3 may“ 3% g siﬂ W \aﬂ; W a”. f % I 3 RA; , MM My 1%,, Ni V? \$ Q w E x . : r, _ W 3.. 9i \1... . _\ 9% M 6 gm; A: rye: a}? §§§§§ §&\\. 5.: iiaéik 8= Shaw that (0, AUT is a locai minimize}: for the probiem Minimize ﬁx) : f(:{7;;:{52) 2 2:11:512 + :52 subject to . .5 5 f? 5 5}» wax% ‘E2 W 1V 7‘ ‘ w. __.£ 5. m Y ,, a ‘ , M mgtwé {\$1311 ‘5: 52 ‘24:; v5 2:”? g: 535 by demonstrating that (07 W1)?“ satisfies the sufﬁcient conditions presenteci in the course. {,2 Q; ”‘3 ‘2 1 f ,. g1: a g 5’“ :3: "f g g M (’1‘ 5/55 w A7 ) ‘ m ‘2 532/ “gm m w A 5 5 X. ‘5“ 5 f 3, ‘ 5 .33 3% it??? g5 5“ w”; €25 5 5 ‘9‘ 5 """ ' ’5 w w / gm“ If 2%,}; 1 :1 E m E 5 1k 25 ”f5” (3 I}. 3 K g E: 5w} 3;; ‘1 _ ”X 5V"f§\55>§5ﬂjy5 gag 5 :3 32353553”; "5’53 g g M f 5w 1 5 w i w 5’“ 5 5 ‘ 5 l9“ 5 N j i. 55 j i, ‘ W m , ﬁg :55 i / g "1“” f ””5 5*?” .7 L: ' .t 55 ”"35 ‘ 5 2’ 5 5 . , , _ a if“ 5:;wa : M; n . 2: g g; a a: 3 “'5 j 55’ 55 5555; :55" [5555» v 55 4:53; -.; 55 9 ”E < b: i I = f \5 EM k w”! 5’ y 5 a a g: 5:} f {:3 {N r- «and M; i; “é, : E 512’ K5 ‘ 5. l 3:: M\ MM 25 m “\f f \ W; 9. Consider the foliowing linear programming problem. Minimize z 2 ~37); + 3:233 -§« 334 + \$5 subject to 1:; we 2% + 3173 + :54 m2" 375 :~. 1 —2I1+3I2+ 373—933;; I 1 I13\$21\$31\$41\$5 Z 0 At a certain step in solving this problem by the simpiex method? the basis is {\$2,114}. Determine the next basis according to the rakes of the simplex method: showing your work in deiail. 5 5 - em mi" WW in wi§{'~??§§ ekg+a>2g€gnﬁé§2€3‘Xg’jﬁbif 5?; up? “33" 3“? M ,. y A? 3% 2o 2%? :3.» ”2i; M3 fa, W 13?”. M :2 s” 2:? 3;: £15- ; 3 A .5’: 3g {3“ f I 2ft" m w, e; £2 {7: Q 3%,» f i m “75“ g" ” a; e 10. Prove that K135 is a vector such that Vf(\$*) x G and Vafﬁm) is positive deﬁnite, then an is a local minimizer for ﬁx). g“ (M; 5” 5 if i Q X rbgjéj’} Fig 3: j/ g; 2:: 5, V? hmﬁwi 3%; ” {MW 5% in “M ”1W g i W”? 5 E E «if ”a 3M g \$— 1»? 33W“? 3‘2 ‘33 If A; 13 5 i z 5" {5%} r ii {Kg} v?» 3"? v Mg} a»; h g {7 //2 g? ‘ f: :3: 359% \j éwik’xémg 394*“ a f i; E? 7:31;”; E my; Eggxgﬂ 3‘? V j; {igéﬂw ii \z , i x « % M g: «Q? E iM J” ; in "‘1 g“? \/&é(§)g2> wav {z w?” - > em £3“ng : g: 5E > “% \$53? if %<§}f Er g, A: {E A L’ “ f w aw g r? {x MM “25%., MA” Q w: Ly? PR? 3‘} g; gri} {SW/{Xi {w £5? 3%th EW :ﬁii‘y’” 7;; {XE} a; ...
View Full Document

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern