08finsol

08finsol - 1 Using Newton’s methoé ’50 ﬁlm the stationary points of f(1171,\$2 \$133.3 — 222 235"if 4 starting Wiih in(1,1 calculate

This preview shows pages 1–10. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 1. Using Newton’s methoé ’50 ﬁlm}: the. stationary points of f(1171_,\$2) :: \$133.3 — 222%.; + 235] "if 4., starting Wiih in : (1,1)? calculate both 331 a-Eld V f (f; ), in fractioa form. an}: 2? m “g 1% gs; mg 3 g g» [j wgim: 5 Q “a; ‘3'"; f X? gig g E 34%; (If; “82;; igémﬁ: \$- \$15" '3: if- w g “'5 i H 2 Will“ M"? :3 ii” : wgﬁéwékw; all §\$2§ggf§2§mi 53? My "a “:2 m a; - 3x s g} sag“; {gig g V”? "g; 53"? iflgﬁwng {Vii/M]; 23% yé WW “ _ a: , ’01 i big“ i} gigging“ {*"E’ EEC??? 4? E‘“ 5 m “:Ww 3"“:mg 3% S E“ E; i} a: {ﬁgg’g 5M5 M gas ‘7 {a J 5 “3; “a a a 2. Given the probiem Minimize fiat}? 33271?) x \$1 subject to 2?] {L 322 + 3:3 m {3 2 2 2 3:] + 3:2 + 9:3 x 1 ﬁgsk‘giga) "Write the Lagrangian function £(\$1,\$251£53,A1,/\2) of this probiem as a function g of five variabies. (b) Show that (Wx/a/Bixfé/ﬁai/Bial/x/B) is a stationary point. of the La— 7 grangian function. :75: im%¢*%§}(c) Show that (wx/{mi/SE V6761 is a regular point. ; ,za’xr . 7— _‘ _W;V 5‘; Qﬂ-kéw.§ gig? Egﬁiﬂgfi/Afg R}; V: W/iggﬁ§?€£g?g§}mgw§{x“ “\$22; “in” 3 g Wm , , E E E i m W Mm Emﬁiwﬁﬁgkg ii”§ gait; ' . ‘ i ME", i “it £51 3;}? w g a. M g w s W g; f" g3 - aa— aa 1‘ v 2 it I if), “WM * ﬂ z i: ‘f 2 i i ’ if»; a ngz ii,” } ff; 7 ii; iii 53:; g Emﬁfgg Egg 1??? i i 5" i if , 1 ad? Emgﬁ is: a a? s; 3. Prove the “Weak Duality Theorem: If 3: is a feasible solution to €116 linear programw ming problem: Minimize z x CTLI: Siibjeci; to A3? : b; :1: Z 0 and y is a feasible soiution to the (iuai probiem: Maximize ﬂ) : {fry subjeci io Arty g C, then 5%: S 0T2: «w? "m: 5% ‘3‘ if: i; <3 o :31 a: W}; a}; £1” ., g," \ i v?" 53?: g: : \$i§ﬁ girwfoxwﬁi bgffhikme/Z: or g3 in W g a: to} 4: {SE 32 T: » (3T1 , x2) that minimizes the function 4. Solve the problem: Find .1“. f<£13i7\$2) = 33:: W ~ 27} + 2\$2 41 Showng your work. ] (31 0, ml)?" in the form :r: = p + q where p is in the 111111 space of A and q is in the range of AT. 11-1 [204 Am 5. Given the mairix express 1‘ ..§z%s§§§§§§s& QE: w L 6. Show that 2? 94);" is a. local minimum for the problem Minimize f(:51,:2:2) = W334 + 5172 subject. to SEQ-+2 1'2 323} ,2 3/1 1/\ IV by demonstrating tbsp: (3 / 2, 9 / 4F satisﬁes the sufﬁcient conditions yresented in the course. é ? g a ‘ 3:? WE} z V i:‘ mi Z; > inﬁgﬁi‘ZaU/S L22") 5” in, m x a} a , w 33:: a; 5x {a}; :: ngﬁggwgiwgzwgwg fa 5AM; ? 1/; gm “5%”? ‘2“ 1:3? “7%?! } ﬁgwgfggggﬁg? Ev? jig g? \fé“ {XS }% j I “A I K : Q i. {WA& 5993 “’5”??? g a 3 7. Given the iinear programming problem Minimize 2 m —331 + 2162 + \$3 sub‘éeet to ‘2. 2 G {3 I1+ \$2 \$1+4IE2 —— x3 EV IV W “’37; ‘i— 333 3:12:5127133 1V ; égéﬁ (a) Show that 35‘ I (0, Z, 2)T ie a feasible solution to the probiem and identify which [MD constraints are active and which are inactive at that point. r ifw Show that p x (2, —1, ~3)T is a. feasible direction at 36 x (8,1,2)? {4’ { mg Determiﬁe the maximal step length a > 8 such that \$+ap {emains feasible, Where i“ is“ jWE w x and p are as iii part (13). fig: Wig; (1) Find ail the feasibie diEections p :: (plypgypBF a}; g; m (9:132)? 5m gm e3§§ei>ﬂi Mm \$+%{§}w&:£ mm 3‘ (y. ' "‘ ~ ‘. ‘j__g{;3{,f‘vxfei{/r we wxfse Maggi»? ﬁgge ﬂag/h"? ENE. W. 8. Find all the 20031 minimizere for the problem Minimize f(nt'1,mg,\$3) m ~221332373 Subject to 2\$1+\$2+\$3 = and. demonetraie that they satisfy the SUf‘ECiGBt conditions presented in the class. 3“"?{éfiiig Q; E ,2,” m 92; E W _ k i i“ K; 14;» g j ﬁx, g‘if'? U {Si} N gig; 953%. _ ‘ mvcgljjg‘: “Kgxggfém “5% zigggeﬁg . t g “a My w“ Qﬁgﬁgxz\$aygt§ 35"" Xéz’kgé'xé é A‘ g s ’1“ /§”§W / “’5. {EL gg’ZC} 55/1“ I}??? “12% 9351:5313 Wig; “32' g; #2:} 5 5 5;; :g g 5:; e. 5; gﬁxé‘wg‘} (43m; £%§L¥%€Qj i532; £5; 3}; f ; zg g “W giE-Fii} {5;} t M e i g ‘ {\$9 3 5:; :1 MI}? 5R1 gngégﬁegggﬂ §~::; ggtwﬁ e. "a g b?) gm; ¥§§2§w§ﬂgxx§ " 12”"? «2,3 5”“: IX? “Ki? ‘7: Egg 3i2€935WXg i3 '2”; E a she}??? x 52‘"% Hat; ix 3 ;‘ E; g? if? E M ;~ M e5}! V: g 3% §;’i/gg*§ wng 553;? g f Q i : f, g WW E; M £2}; E if: {5% é ‘2 jg { 9. For the problem: Minimize ﬁx) subject :0 Act: 2 b and Z a basis mil} space matrix for A, prove that. if ZTVf = (37 then there exists a vector A)k (the vector of Lagrange multipliers) such that Vf m ATM. YOE may assume any other theorems ihat you need for the proof. :W‘hw} 5-: 1 > f“- * g a“. §/ 5, if _ Mam-£6”, {gig 33‘ Maj-=4} 5&9: ; éhhii '1“ 1} {gig} :3 gay}; agﬂfgé A4} 10. F ind all the local minimizers for ézhe problem Minimize ﬂack 3:2) 2 ~£~ 2:135 + x1332 w 4:51 + 2:52 ~i» 1 subject to \$1 2 32 (1) in the foliowing cases. g} Al} Ehree constraints are active (b) All three constraints are in&ctive. (c) Constraint (1) is active and consiraints (2) and (3) are iaactive. {Eg- ‘“" g&&ﬂ£’¥;\i+ Egg" 5“??? “QXXH “Wk: 5%? m Egg} 2 . - »‘ 0 ﬂ vg? £2i“3A”;23;;:2ng My? ¢%g%}awﬁg§g:§ j E; ii}; {a} r Mm :3: 3%} V-thgé\$g~ ;€”%§;+&5?}§ 7% “gxg”‘” Q i {as}? j I? J" ’2 f :2? g "WW 3 (75‘ - ’ \$1.355 :M}; V JL 5%} i 53 if A g} 7%; i we «if {5; “X.pr gait/)3 31”} m “ “3 §3%W%W§EA § 1 é§%3w%.} giwg fr W2} gggfrg “nil; 1g; Ems: E ...
View Full Document

This note was uploaded on 01/18/2011 for the course MATH Math 164 taught by Professor Brown during the Spring '10 term at UCLA.

Page1 / 10

08finsol - 1 Using Newton’s methoé ’50 ﬁlm the stationary points of f(1171,\$2 \$133.3 — 222 235"if 4 starting Wiih in(1,1 calculate

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online