Lecture%2014%20-%20Choice%20Under%20Uncertainty%20II

Lecture%2014%20-%20Choice%20Under%20Uncertainty%20II - FIN...

Info iconThis preview shows pages 1–11. Sign up to view the full content.

View Full Document Right Arrow Icon
1 FIN 501 Financial Economics Lecture 14: Choice Under Uncertainty II Professor Nolan Miller
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
2 Announcements Problem Set #4 is due today by 3pm. Problem Set #5 is available on Compass.  Due Oct. 19.
Background image of page 2
3 Last time Leftovers from Capital Markets Lotteries Expectations Expected Utility
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
4 This time Risk Aversion Certainty Equivalents Insurance Portfolio Choice Normal-Exponential Model and Mean-Variance  Utility Efficient Frontier in Mean-Variance Space Link to CAPM
Background image of page 4
5 Risk aversion and utility for money If a DM is risk averse, this implies  something about the shape of u(w), the  DM’s utility for money. In particular, a risk averse DM will have  a strictly concave u(w). u’(w) > 0 u’’(w) < 0 This corresponds to decreasing marginal  utility of wealth. An additional $1 is worth more to me if I  am poor than if I am rich. “more concave”   more risk averse. w u(w) Risk averse
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
6 Example Suppose u(w) = ln(w). This function is concave.  u’’(w) = -1/w 2 . You start with wealth $100. You face a lottery where you win $50 or lose $50 with equal probability. EV = ½ (150) + ½ (50) = 100 . Is the expected utility  with the lottery higher or lower than the utility of its  expected value, u(100)?
Background image of page 6
7 Example, cont’d How do EU and EV compare? Utility of $100 for sure is ln(100)=4.61 Utility of ln(50) and ln(150) EU of the lottery is halfway between  ln(50 and ln(150). EU = ½ ln(150) + ½ ln(50)  4.46 By a fact of geometry, EU is also the  height where a line between (50,ln(50))  and (150,ln(150)) crosses EV! w u(w) 100 50 150 ln(100)=4.61 ln(50)=3.91 ln(150)=5.01 EU= 4.46
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
8 Example, cont’d Note that ln(100) > EU. So, this DM prefers $100 for  sure to the lottery on $50 and  $150 This is true for any lottery and  concave function Next slides do same  graphical exercise for  Utility = u(w) Lottery = equal chance  to win, lose L w u(w) 100 50 150 ln(100)=4.61 ln(50)=3.91 ln(150)=5.01 EU= 4.46
Background image of page 8
9 Example Suppose u(w) is strictly increasing and strictly concave. You start with wealth $w*. You face a lottery where you win $L or lose $L with equal probability. EV = ½ (w *  + L) + ½ (w *  - L) = w* . Is the expected utility  with the lottery higher or lower than its expected  value, w * ?
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
10 Example, cont’d EU = ½ ln(w *  + L) + ½ ln(w *  - L) How do EU and EV compare? Utility of w
Background image of page 10
Image of page 11
This is the end of the preview. Sign up to access the rest of the document.

This note was uploaded on 01/18/2011 for the course FIN fin580 taught by Professor Miller during the Spring '10 term at University of Illinois, Urbana Champaign.

Page1 / 42

Lecture%2014%20-%20Choice%20Under%20Uncertainty%20II - FIN...

This preview shows document pages 1 - 11. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online