l14_ece15a_6

# l14_ece15a_6 - Today: Overview ECE 15A Fundamentals of...

This preview shows pages 1–4. Sign up to view the full content.

1 ECE 15A Fundamentals of Logic Design Lecture 14 Malgorzata Marek-Sadowska Electrical and Computer Engineering Department UCSB 2 Today: Overview ± Multi-level circuits, conversion of forms ± Quine-McCluskey simplification ± Petrick’s method ± Propagation delays/circuit hazards ± MUX as circuit element ± Mux expansion ± 3-state buffers 3 Multi-level circuit realizations – conversion of forms ± Draw the circuit for the following Boolean algebraic expression F=((x+y)w’+z)XOR(x’y+z’) z Show a NOR-NOR realization for F. x y w z 4 Multi-level circuit realizations – conversion of forms ± F=((x+y)w’+z)XOR(x’y+z’) z Show a NOR-NOR realization for F. x y w z a b b a XOR a b f 0 0 0 0 1 1 1 0 1 1 1 0 5 Multi-level circuit realizations – conversion of forms ± F=((x+y)w’+z)XOR(x’y+z’) z Show a NOR-NOR realization for F. x y w z 6 Multi-level circuit realizations – conversion of forms ± F=((x+y)w’+z)XOR(x’y+z’) z Show a NOR-NOR realization for F. x y w z

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 7 Multi-level circuit realizations – conversion of forms ± F=((x+y)w’+z)XOR(x’y+z’) z Show a NOR-NOR realization for F. x y w z 8 Multi-level circuit realizations – conversion of forms ± F=((x+y)w’+z)XOR(x’y+z’) z Show a NOR-NOR realization for F. x y w z 9 Multi-level circuit realizations – conversion of forms ± F=((x+y)w’+z)XOR(x’y+z’) z Show a NOR-NOR realization for F. x y w z 10 Quine-McCluskey Method 1. Construct the Implicant Table a) Group minterms by number of 1’s b) Apply Adjacency Theorem to pairs of implicants c) Mark all implicants that are used in larger groups 11 Notation F(A, B, C, D) = Σ m(4,5,6,8,10,11) 1 ABCD 4 0100 ABCD 8 1000 2 ABCD 5 0101 ABCD 6 0110 ABCD 10 1010 3A B C D 1 1 1 0 1 1 Full variable decimal 1,0,- 12 Example ± Simplify F(a,b,c,d)= a’b’c’+a’b’cd’+a’bd+bcd’+ab’c’+ab’cd’ using Quine-McCluskey method.
3 13 Quine-McCluskey Method Example group 0 group 1 group 2 group 3 0 0000 1 0001 2 0010 8 1000 5 0101 6 0110 9 1001 10 1010 7 0111 14 1110 Column I Column II Combine group 0 and group 1: = ) 14 , 10 , 9 , 8 , 7 , 6 , 5 , 2 , 1 , 0 ( m F 14 Example (cont.) group 0 group 1 group 2 group 3 0 0000 1 0001 2 0010 8 1000 5 0101 6 0110 9 1001 10 1010 7 0111 14 1110 Column I Column II 0,1 000- 0,2 00-0 0,8 -000 Combine group 1 and group 2. 15 Example (cont.) group 0 group 1 group 2 group 3 0 0000 1 0001 2 0010 8 1000 5 0101 6 0110 9 1001 10 1010 7 0111 14 1110 Column I Column II 0,1 000- 0,2 00-0 0,8 -000 1,5 0-01 1,9 -001 2,6 0-10 2,10 -010 8,9 100- 8,10 10-0 Combine group 2 and group 3.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 01/20/2011 for the course ECE 15A taught by Professor M during the Winter '08 term at UCSB.

### Page1 / 8

l14_ece15a_6 - Today: Overview ECE 15A Fundamentals of...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online