ai-planning

ai-planning - Intro to Artificial Intelligence...

Info iconThis preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
1 Planning (under complete Knowledge) Intro to Artificial Intelligence
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Why Planning  Intelligent agents must operate in the world. They  are not simply passive reasoners (Knowledge  Representation, reasoning under uncertainty) or  problem solvers (Search), they must also  act  on the  world. We want intelligent agents to act in “intelligent ways”.  Taking purposeful actions, predicting the expected  effect of such actions, composing actions together to  achieve complex goals.  2
Background image of page 2
Why Planning  E.g. if we have a robot we want robot to decide what  to do; how to act to achieve our goals 3
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
A Planning Problem How to change the world to suit our needs Critical issue: we need to reason about what the  world will be like after doing a few actions, not just  what it is like now 4 GOAL : Craig has coffee CURRENTLY : robot in mailroom, has no coffee, coffee not made, Craig in office, etc. TO DO : goto lounge, make coffee,…
Background image of page 4
Planning  Reasoning about what the world will be like after doing a  few actions is similar to what we have already examined.  However, now we want to reason about  dynamic  environments in(robby,Room1), lightOn(Room1) are true: will they be true after  robby performs the action turnOffLights? in(robby,Room1) is true: what does robby need to do to make  in(robby,Room3) true? Reasoning about the effects of actions, and computing  what actions can achieve certain effects is at the heart of  decision making . 5
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Planning under Uncertainty One of the major complexities in planning that we will  deal with later is planning under  uncertainty Our knowledge of the world probabilistic. Sensing is subject to noise (especially in robots). Actions and effectors are also subject to error  (uncertainty in their effects).  6
Background image of page 6
Planning But for now we will confine our attention to the  deterministic case. We will examine: Determining the effects of actions. finding sequences of actions that can achieve a desired  set of effects.  This will in some ways be a lot like search, but we will see  that representation also plays an important role.  7
Background image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Situation Calculus  First we look at how to model dynamic worlds within  first-order logic. The  situation calculus  is an important formalism  developed for this purpose. Situation Calculus is a first-order language. Include in the domain of individuals a special set of  objects called situations. Of these  s 0  is a special  distinguished constant which denotes the “initial”  situation.  8
Background image of page 8
Situation Calculus Situations are used to index “states” of the world. 
Background image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 10
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

Page1 / 101

ai-planning - Intro to Artificial Intelligence...

This preview shows document pages 1 - 10. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online