This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: CS 473 Homework 7 (due April 6, 2010) Spring 2010 1. On an overnight camping trip in Sunnydale National Park, you are woken from a restless sleep by a scream. As you crawl out of your tent to investigate, a terrified park ranger runs out of the woods, covered in blood and clutching a crumpled piece of paper to his chest. As he reaches your tent, he gasps, “Get out. . . while. . . you. . . ”, thrusts the paper into your hands, and falls to the ground. Checking his pulse, you discover that the ranger is stone dead. You look down at the paper and recognize a map of the park, drawn as an undirected graph, where vertices represent landmarks in the park, and edges represent trails between those landmarks. (Trails start and end at landmarks and do not cross.) You recognize one of the vertices as your current location; several vertices on the boundary of the map are labeled EXIT. On closer examination, you notice that someone (perhaps the poor dead park ranger) has written a real number between 0 and 1 next to each vertex and each edge. A scrawled note on the back of the map indicates that a number next to an edge is the probability of encountering a vampire along the corresponding trail, and a number next to a vertex is the probability of...
View
Full
Document
This note was uploaded on 01/21/2011 for the course CS 473 taught by Professor Chekuri,c during the Spring '08 term at University of Illinois, Urbana Champaign.
 Spring '08
 Chekuri,C
 Algorithms

Click to edit the document details