PP Section 1.2 - AbsoluteValue Definition Properties...

Info iconThis preview shows pages 1–6. Sign up to view the full content.

View Full Document Right Arrow Icon
    Absolute Value  Definition  Properties  Evaluating Expressions
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Absolute Value The absolute value of a number is its distance to zero on  a number line. Notation:  |a| Examples: |3| = 3 |-3| = 3 |7| = 7 |-7| = 7 2 1 2 1 = 2 1 2 1 = -
Background image of page 2
    Opposites Opposite numbers  are numbers located in  opposite sides of zero and have the same absolute  value. The following are opposites: 2 and -2 0.4 and – 0.4 4 3 and 4 3 - Notation:  -a is the opposite of a. Note:  -(-a) = a
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
    Formal Definition < - = 0 , 0 , | | x x x x x In words: The absolute value of a number is   itself if the number is non-negative  its opposite if the number is negative
Background image of page 4
    Evaluating Expressions Find the value of each expression. 1.   3 + |5 – 8| = 3 + |-3| = 3 + 3 = 6 2.   5[3 - |-5| - |-3|] = 5(3 – 5 – 3) = 5(-5) = -25 3.   |x – 3| + |x + 1| if x < -5
Background image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Image of page 6
This is the end of the preview. Sign up to access the rest of the document.

Page1 / 10

PP Section 1.2 - AbsoluteValue Definition Properties...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online