PP Section 1.2

# PP Section 1.2 - AbsoluteValue Definition Properties...

This preview shows pages 1–6. Sign up to view the full content.

Absolute Value  Definition  Properties  Evaluating Expressions

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Absolute Value The absolute value of a number is its distance to zero on  a number line. Notation:  |a| Examples: |3| = 3 |-3| = 3 |7| = 7 |-7| = 7 2 1 2 1 = 2 1 2 1 = -
Opposites Opposite numbers  are numbers located in  opposite sides of zero and have the same absolute  value. The following are opposites: 2 and -2 0.4 and – 0.4 4 3 and 4 3 - Notation:  -a is the opposite of a. Note:  -(-a) = a

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
Formal Definition < - = 0 , 0 , | | x x x x x In words: The absolute value of a number is   itself if the number is non-negative  its opposite if the number is negative
Evaluating Expressions Find the value of each expression. 1.   3 + |5 – 8| = 3 + |-3| = 3 + 3 = 6 2.   5[3 - |-5| - |-3|] = 5(3 – 5 – 3) = 5(-5) = -25 3.   |x – 3| + |x + 1| if x < -5

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 10

PP Section 1.2 - AbsoluteValue Definition Properties...

This preview shows document pages 1 - 6. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online