PP Section 2.2

# PP Section 2.2 - Other Types of Equations In this section...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Other Types of Equations In this section we review how to solve several types of equations. Example: Absolute Value Solve the equation 3 x + 1 = 7 3x + 1 = 7 3x + 1 = 7 ⇒ 3 x + 1 = −7 2 3x = 6 ⇒ ⇒x= 8 3 x = −8 − 3 Example: Absolute Value Solve the equation 4 x − 2 = 3x − 4 Solving the equation above is equivalent to finding the x­ coordinates of the points of intersection of the two curves in the plot. 4 x − 2 = 3x − 4 x − 2, x − 2 ≥ 0 OR x ≥ 2 x−2 = − x + 2, x − 2 < 0 OR x < 2 4( x − 2), x ≥ 2 ⇒ 3x − 4 = 4 x − 2 = 4(− x + 2), x < 2 4( x − 2), x ≥ 2 3x − 4 = 4 x − 2 = 4(− x + 2), x < 2 ⇒ 3 x − 4 = 4 x − 8, x ≥ 2 ⇒ x = 4 12 ⇒ 3 x − 4 = −4 x + 8, x < 2 ⇒ 7 x = 12 ⇒ x = 7 Checking answers: 4 x − 2 = 3x − 4 x = 4 : 4 4 − 2 = 3(4) − 4 ⇒ 8 = 8 12 12 88 12 x = : 4 − 2 = 3 − 4 ⇒ = 7 7 77 7 Example: Roots Solve the equation ( x 5 − 1) 3 + 8 = 0 ( x − 1) + 8 = 0 ⇒ ( x − 1) = −8 ⇒ x − 1 = −2 5 3 5 3 5 x = 1 − 2 = −1 ⇒ x = −1 5 Example: Roots Solve the equation ( x 2 − 1) 3 + 8 = 0 ( x − 1) + 8 = 0 ⇒ ( x − 1) = −8 ⇒ x − 1 = −2 2 3 2 3 2 x = 1 − 2 = −1 ⇒ NO real solution 2 Example: Quadratic Type Solve the equation x 4 − 2 x 2 − 14 = 0 Completing the square: x 4 − 2 x 2 − 14 = ( x 4 − 2 x 2 + 1) − 15 = ( x 2 − 1) 2 − 15 = 0 ⇒ ( x − 1) = 15 ⇒ x − 1 = ± 15 ⇒ x = 1 ± 15 2 2 2 2 1 − 15 < 0 ⇒ x = 1 + 15 ⇒ x = ± 1 + 15 2 Example: Quadratic Type Solve the equation x 4 − 2 x 2 − 14 = 0 Using the quadratic formula: 2 ± 4 − 4(−14) 2 ± 60 x= = = 1 ± 15 2 2 2 x ≥ 0 ⇒ x = 1 + 15 ⇒ x = ± 1 + 15 2 2 Example: Radicals Solve the equation 2 + 10 − x = − x From looking at the equation we know: x ≤ 10 and − x ≥ 0 ⇒ x ≤ 0 2 + 10 − x = − x ⇒ 10 − x = − x − 2 ⇒ 10 − x = (− x − 2) = x + 4 x + 4 2 2 ⇒ x 2 + 5 x − 6 = 0 ⇒ ( x + 6)( x − 1) = 0 ( x + 6)( x − 1) = 0 ⇒ x = −6 O R x = 1 x ≤ 10 and − x ≥ 0 ⇒ x ≤ 0 ⇒ x = −6 Check answer: 2 + 10 − x = − x 2 + 10 − (−6) = 2 + 16 = 2 + 4 = 6 = −(−6) Note: x = 1 is an extraneous solution, a solution that appears in the algebraic process, but is NOT a solution of the original problem. Example: Fractional Exponents Solve the equation x + 3 x 3 − 28 = 0 4 3 2 x + 3 x − 28 = ( x ) + 3x − 28 = u + 3u − 28 4 3 2 3 2 3 2 2 3 2 u + 3u − 28 = (u + 7)(u − 4) = 0 2 ⇒ u = −7 OR u = 4 u = x ⇒ u ≥ 0 ⇒ x 3 = 4 2 3 2 x = 4 ⇒ x = (±2) = ±8 2 3 3 ...
View Full Document

## This note was uploaded on 01/22/2011 for the course MATH 2 taught by Professor Gardner during the Fall '08 term at Irvine Valley College.

Ask a homework question - tutors are online