PP Section 4.5

# PP Section 4.5 - MaximumandMinimum Problems TheProblem...

This preview shows pages 1–5. Sign up to view the full content.

Maximum and Minimum  Problems

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
The Problem Want:  to solve optimization problems An optimization problem wants to find the maximum of  minimum value of a function. What we know:  A quadratic function has a maximum or a  minimum value at its vertex. To do:  Find the vertex of a quadratic function and  interpret the result in the context of the word problem.
Example A farmer wants to enclose a rectangular pen on three  sides with 1,000 ft. of fencing. The fourth side is  bordered by a straight river. Find the dimensions of the  pen that maximize the area. River x x y Given:  2x + y = 1000 Area = xy Solving for y:  y = 1000 – 2x Hence the area is:  A(x) = x(1000 – 2x)

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
x x x x x A 1000 2 ) 2 1000 ( ) ( 2 + - = - = We have a quadratic function with a < 0, so the  parabola opens down. Hence there is a maximum value at the vertex.
This is the end of the preview. Sign up to access the rest of the document.

## This note was uploaded on 01/22/2011 for the course MATH 2 taught by Professor Gardner during the Fall '08 term at Irvine Valley College.

### Page1 / 12

PP Section 4.5 - MaximumandMinimum Problems TheProblem...

This preview shows document pages 1 - 5. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online