ps8solnsSp06

# ps8solnsSp06 - %Engineering 6 Spring 2006 Problem 8.1...

This preview shows pages 1–2. Sign up to view the full content.

%Engineering 6, Spring 2006, Problem 8.1 Solution %(Taylor series of exp(x) using for loop) %Suppress extra lines in output and set fixed short "good" display format compact ; format short g ; clc; %Clear command window and variables clear; %Get value of x and number of terms to use from user disp( 'Calculate exp(x) using Taylor series' ); x = input( 'Enter value of x: ' ); numterms = input( 'Enter number of terms to use: ' ); %Each term in the Taylor series has the form x^n/n!, where n %starts at 0. (Note that 0! is defined to be 1.) %Loop to calculate sum of Taylor series terms (note that %if there are 10 terms, the last value of n is 10-1, and so on). Taylorsum = 0; %Initialize sum value to 0 for n=0:(numterms-1) Taylorsum = Taylorsum + x^n/factorial(n); end %Calculate actual value of exp(x) and rel. percentage error actualvalue = exp(x); relativeerror = 100*abs(actualvalue-Taylorsum)/actualvalue; %Display results disp( 'Taylor series value of exp(x):' ); disp(Taylorsum); disp( 'Actual value of exp(x):' ); disp(actualvalue); disp( 'Relative percentage error:' ); fprintf( '%.3f\n' ,relativeerror); Displayed results: Calculate exp(x) using Taylor series Enter value of x: 10 Enter number of terms to use: 5 Taylor series value of exp(x): 644.33 Actual value of exp(x): 22026 Relative percentage error: 97.075 Calculate exp(x) using Taylor series Enter value of x: 10 Enter number of terms to use: 10 Taylor series value of exp(x): 10087 Actual value of exp(x): 22026

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 5

ps8solnsSp06 - %Engineering 6 Spring 2006 Problem 8.1...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online