This preview shows pages 1–2. Sign up to view the full content.
This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: ASSIGNMENTS FOR NUMERICAL COMPUTATION MAN V. M. NGUYEN, PH.D. Part I: Matrices Computation Assignment IA: Vector Products and Transpose For real matrices, the transpose operation interchanges a i,j and a j,i . MAT LAB uses the apostrophe operator () to perform a complex conjugate trans pose , resulting a matrix called adjoint matrix ; and the dotapostrophe operator (.) to transpose without conjugation. For matrices containing all real elements, the two operators return the same result. For a complex vector or matrix, z , the quantity z not only transposes the vector or matrix, but also converts each complex element to its complex conjugate. That is, the sign of the imaginary part of each complex element is changed. Multiplying Matrices: reflects composition of the underlying linear trans formations and allows compact representation of systems of simultaneous linear equations. If A is mby p and B is pby n , their product C = AB is mby n . In MATLAB, try the followings B = magic(3); X = B z = [1+2i 73i 3+4i; 62i 9i 4+7i]; z; z. A = pascal(3); B = magic(3); X = A*B; Y = B*A The Identity Matrix: I = eye(3,3) Date : September 6, 2010 Email: mnguyen@cse.hcmut.edu.vn ....
View
Full
Document
This note was uploaded on 01/22/2011 for the course CS 225 taught by Professor Staff during the Spring '08 term at University of Illinois, Urbana Champaign.
 Spring '08
 Staff
 Data Structures

Click to edit the document details