{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

sec_4_3_sol

sec_4_3_sol - APPM 4/5570 Solutions to Problems from...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: APPM 4/5570 Solutions to Problems from Section 4.3 35. X ∼ N (8 . 8 , 2 . 8 2 ), ie: μ = 8 . 8, σ 2 = 2 . 8 2 , and σ = 2 . 8. a. P ( X ≥ 10) = P X- 8 . 8 2 . 8 ≥ 10- 8 . 8 2 . 8 ≈ P ( Z ≥ . 43) = 1- Φ(0 . 43) = Φ(- . 43) = 0 . 3336 P ( X > 10) = P ( X ≥ 10) = 0 . 3336 b. P ( X > 20) = P X- 8 . 8 2 . 8 > 20- 8 . 8 2 . 8 ≈ P ( Z > 4) ≈ 0 given the accuracy of Table A. 3. c. P (5 ≤ X ≤ 10) = P 5- 8 . 8 2 . 8 X- 8 . 8 2 . 8 ≥ 10- 8 . 8 2 . 8 ≈ P (- 1 . 36 ≤ Z ≤ . 43) = Φ(0 . 43)- Φ(- 1 . 36) = 0 . 6664- . 0869 = 0 . 5795 d. Want to solve P (8 . 8- c < X < 8 . 8 + c ) = 0 . 98 for c . Standardizing, this gives P 8 . 8- c- 8 . 8 2 . 8 < X- 8 . 8 2 . 8 < 8 . 8+ c- 8 . 8 2 . 8 = P- c 2 . 8 < Z < c 2 . 8 . By symmetry about zero of the z-curve, we want to find c so that P Z < c 2 . 8 = 0 . 98 + 0 . 01 = 0 . 99 . A reverse look-up in Table A. 3 gives us that c 2 . 8 ≈ 2 . 33 ....
View Full Document

{[ snackBarMessage ]}

Page1 / 3

sec_4_3_sol - APPM 4/5570 Solutions to Problems from...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon bookmark
Ask a homework question - tutors are online