{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

sec_4_3_sol

# sec_4_3_sol - APPM 4/5570 Solutions to Problems from...

This preview shows pages 1–2. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: APPM 4/5570 Solutions to Problems from Section 4.3 35. X ∼ N (8 . 8 , 2 . 8 2 ), ie: μ = 8 . 8, σ 2 = 2 . 8 2 , and σ = 2 . 8. a. P ( X ≥ 10) = P X- 8 . 8 2 . 8 ≥ 10- 8 . 8 2 . 8 ≈ P ( Z ≥ . 43) = 1- Φ(0 . 43) = Φ(- . 43) = 0 . 3336 P ( X > 10) = P ( X ≥ 10) = 0 . 3336 b. P ( X > 20) = P X- 8 . 8 2 . 8 > 20- 8 . 8 2 . 8 ≈ P ( Z > 4) ≈ 0 given the accuracy of Table A. 3. c. P (5 ≤ X ≤ 10) = P 5- 8 . 8 2 . 8 X- 8 . 8 2 . 8 ≥ 10- 8 . 8 2 . 8 ≈ P (- 1 . 36 ≤ Z ≤ . 43) = Φ(0 . 43)- Φ(- 1 . 36) = 0 . 6664- . 0869 = 0 . 5795 d. Want to solve P (8 . 8- c < X < 8 . 8 + c ) = 0 . 98 for c . Standardizing, this gives P 8 . 8- c- 8 . 8 2 . 8 < X- 8 . 8 2 . 8 < 8 . 8+ c- 8 . 8 2 . 8 = P- c 2 . 8 < Z < c 2 . 8 . By symmetry about zero of the z-curve, we want to find c so that P Z < c 2 . 8 = 0 . 98 + 0 . 01 = 0 . 99 . A reverse look-up in Table A. 3 gives us that c 2 . 8 ≈ 2 . 33 ....
View Full Document

{[ snackBarMessage ]}

### Page1 / 3

sec_4_3_sol - APPM 4/5570 Solutions to Problems from...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online