{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Quizzes2002

# Quizzes2002 - Gnu-t 2 1(10 pts In the system shown above...

This preview shows pages 1–9. Sign up to view the full content.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: Gnu-t 2. 1. (10 pts) In the system shown above, the propagation velocity VI, = 2 x 108 m/s and the characteristic impedance is Z0 = 50 £2. The generator voltage vG(t) is given by , V6 an V t (as) O 5 '0 is The load voltage vL(t) is observed to be as follows: VI. ’0 V I .. 0. ’33 V t (as) O 5 lo I 5' 2 o z 5 3g 3 S (a) Find the length of the transmission line, d: . g _ ‘1 A_ :. LVP)(T)=Q-K\O )(lO‘UO 3 d= & (m) (b) Find RL. —— Z: =l .. ”Q .. l .2 .. ’1’ x q a- ° m" 7:“ RL = 83 3 (9) (c) Find the inductance per unit length, L Urs—L—)'Z>’ i“- §3=L= 5" =2.S'xlo'q' HIM a. W: 2. Ma‘ L = Q50 k(H/m) (d) Find the capacitance per unit length C \ .. Cc. 7‘ \ X l0 “9 F ‘M is“? C = loo ?(F/m) (c) Find and plot Vin over the time interval 0 < t < 40: vk‘ 9 2. 6"!- r1 I (a (“3) 3 == ‘5 O (a 20 39 ‘10 \l‘b=%)v-= 2-) V+‘0.6?) V—= 0J4? 2. (10 pts) In the lossless transmission line system shown, the lines are initially uncharged and the switch closes at t=0. loom. __§’t=.o,l+ 7?(I._ E5—;=o 0.1, (a) Find the total line voltages indicated on the reﬂection diagram. Vﬂa—l'b V2.7: +2—Q Vt“: 3.84 U2?=|,qq vB = 4 VC = 4 VD = 7 - 8 Li (b) Find VL as t —) oo VL = I 0 (0) Plot the input power versus t for 0 < t < 4T: ,?.* [,0 W 0.16 W t o T 21‘ 3" «T 3. (10 pts) The transmission line shown below is charged for a long time with the switch in position A. At time t=0, the switch is moved to position B. (a) Determine the total load voltage VL before the switch is moved from A to B (IL: 01969? A) VL= (0-97 V (b) Determine the steady-state values V55+ and Vss_ before the switch is moved from A to B v++v‘= (0.665? V85: 50 +_.U—=-.. [email protected]?‘ = 3.3 - V (0 )%O 33 V88 = l‘ a? (c) Determine the total load voltage VL at t=0+, after the switch is moved to position B 5° ' LS'JL ZVE= ‘0 9” VL= 3.33 (d) Fill in the reﬂection diagram below, to determine the total line voltages V1, V2, and V3, at the times and locations indicated in the diagram. o Vt {5 V ’3 T 11‘ b ' V1= 1m“? ", V2 = 3. 3 3 V3 = 3. 3?) (e) Plot the load voltage versus t for 0 < t < 4T: V._ '3 . 33 >13 0 1- zr 3r «1- 4. (4 pts) The switch in the transmission line system shown below is closed at t=0. The load consists of a nonlinear device with the I-V characteristic shown on the following page. \[+: s" ’7 Ik: \D-VL. VL= 7-0 V so IL = [Z 0 MA 5. (6 pts) A lossless air-ﬁlled transmission line has Z0 = 100 Q. (a) A 10 (cm) length of this line is terminated in an open circuit. Find the input impedance of the line at f=25 MHz. 7.5 \D 1:ch ‘ 6) (0.0:- 0.0524 3 x \o 6 ‘ . Zm= ,3 gout(/¥L), In: (13) (C) 34;»: J3 \°l 0% .0. Is there a shorter length of this transmission line that has thesame input impedance as the 10 (cm) section? If so, what is its length? % xsmv =s2M —» L.= 0+3.) cc *1; a. 25:04:" Sketch the voltage standing wave pattern on the 10 cm line, clearly showing the t ng location of minima and maxima: Wt) )1- : I0- 6 3’ to “I“ In). -]%?X:E€ 1i:”' 11;ii:t:¥;:j:“r i igiﬂ' EEE ii? I E-EEiiEI IE ii.§:£-E 2-4 '-> 1412-11 7 » ﬂEEIEEEEEEiEEE E.EEE EEE EEEEE.EE EEEEE- EE :1 13;: _‘ 11:1; :3. " 1 EEE- EEE: EEE: :iiiii iii- in ~- a 111I111... 1 111 :i:1:1 1:11;." " -‘.E I: Iii! EEEEIEEEEE EEE E: :Egiiﬂ Him: . -L. ., ._ _ - ._- . ,. - ,- T1f11f1_' gt E E I: “I: '" :J“i“'1ia_ EEEEEEIE Eﬁ ﬁiﬂliigﬁ ﬁii:§iiiiiiiii E.“ ;'1::.f;“_x;1:t;. 1: ;_:__|_ “EE: EEEE'EE EEE! r '-1-‘-':1i=~i_?-5 E11; 2;»?3 E E! EEEEEEEEEEEEEEEE EEEE EEE EEEEEEEEE 1 ‘ 1 T“ M I I- -I:I .111. 1 -5. ,- ﬂi1ﬁf-1\$1' 1-1~ ' 11 .1 1 -1..-’ - f- .-1- 1 , . t" . 11% 11' -~ ' ' ' “1:“? 11:11; -1: .1,_“_'f§_. =- g“! '1 1' F L - If _ __ _. - - , 1.1111111?! 11 7' ‘1 1 T 1' l'" '— III 1 11111111111111!!! 111111151111151111111111: E EEEEEEEEE' EEEEE_ 'EEEE EEE =EEEE EEEE EE EEEEEEEEEE.EE EE': 1111 1111.1 -1111=111111=11-111 11 11111111111 11111111111111 111111 .111 ﬁﬁ 1111111151111 11111111: 1'1—E: 15511111 11111111 1511111 11 EEEEEEEEEE EEE ..EEEEE .EEEEEEE EEEEEE'EEEE IEEE ' 1' 1115111i 111111111111 '111111'"11= 11.... 1111- '111111 111.11" * l - --.—lo. 1 ’ ' ' 1 i. ,, :1? ' 111E111“ 1E»- 111111111-"1111111.11111111111111111111 ~ .11111-1141 114 I EEEEEEIEEEEEEEEEE 'EEEEE EEEEEEEEEEEEEEEEEE EE EEEE _ 1511115111111111'111111'1111111111111111111111 11111111111111'E' 1-1 "11111111111"1 111.11 111111111111111111111111 aura: i— Sumku. 2.007.. 1. (10 pts) The curve C deﬁned by the equation '3x2—2=y3=4z+1 and the straight line L deﬁned by the equation . x=y=22+1 intersect at the point (1,1,0). (a) Find a unit vector tangent to C at (1,1,0). bxdx == 33:45:444; —) aﬁClﬁp) de=3a¢3=q¢u 41- : ALI): +0936 +6473- APHZM £4 daft-E. : ﬂ:b¢+(§_&‘)g J .. +9-4 M,L+h3L¢i/deﬁa V=ZQ+HCS+3\$ (4!) OLD-wet “ind-w: iA+_L4 3 4 4W: 2'“! 2134-.7‘2. (MSRMM-‘F 32. ﬁg’t‘Kﬁ, gym!) (b) Find a differential length vector tangent to L and expressed in terms of dz. dx = ‘3': cad-e 4:02: (24:39 +(2Aeﬂg + 4% €— (lZISZ. apt “KM. M) (c) Find a vector that is perpendicular to C m L at (1,1,0). A a A, X 3 1. VHF 01% 2 4 3 =4e(—29+4g-qg) 2 z I 2. (10 pts) A volume charge density (C/m3) is given in spherical coordinates by 2 gg-B'd‘ssl-lﬁfzbv‘ l—r O<r<2 5‘ 9V“): 1'4 2<r<4 0 r>4 Using the integral form of Gauss’s law“,r ﬁnd the 15 —ﬁeld as a function of r v (a) intheregionr<2 Gum" - is f1 Saw-2) \$181. 9 chi-A9149 ¢ao 95° van: 5' = V‘ "L. I-mE ,5 7 'IDvr. 62““; = 3.2—3.1 04"“?- Atrrb 3 5' ______________________ M (b) intheregion2<r<4 & __ «VLF.- “7'1'4‘75' ‘r A!" rag 1-32. -m if = «W [ 3 ? '1,— + ?] 5 Que -2.‘2..Ol‘l ‘1‘... 4. 29v- 4“,”: v; + =r 24v ‘4 ._____—______________ H (c) intheregionr>4 Qu‘ qwfl—iﬁ; ‘13:? 440384} 3. (10 pts) The static electric field in a region of free space (8 = so) is given by 1.3: (3x2 + yz) §+ (4y3 + xz) 9+ (423 + xy);. (a) The associated electric scalar potential V(x,y,z) is (circle one) — (x3yz + y4xz + z4xy) —xyz(1+x3+y4+z4) — (xyz + x3 + y4+ 24) — (yz + 6x + xz +12y2 + xy +1222) none of these "VZ~-(13E+s<3+3‘+ 2‘5} : a? (3x1+3%) + ﬁ (433+ ‘9 + 209443.) (b) Determine the volume charge density as a function of x, y, and z in that region of space. {N = v.55 =-. v. (55):: éo{ 62x +l131+12ezf 4. (10 pts) Region 1, comprising the half-space x < 0, is a dielectric region with permittivity 81:86 and permeability in = 110, whereas region 2, the half-space x > 0, has permittivity 22 = 280 and permeability M2 = 200%. The ﬁelds at x=0+ in region 2 are given by Eq=10§+15§—202, H2=2£—5§+2 Find the electric and magnetic fields at x = 0' in region 1. ...
View Full Document

{[ snackBarMessage ]}