{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

SecBEx3W01

# SecBEx3W01 - x y that occupies the region r p x y = D x y y...

This preview shows pages 1–2. Sign up to view the full content.

EXAM 3 MATH 22 Name: ____________________________ Winter 2001 Section: __________ You must show all work clearly to receive full credit. 1) Evaluate the iterated integrals (7) (a) sin( ) x y dydx + 0 2 0 2 p p (7) (b) e dxdy x y 2 1 0 1 (7) (c) x y z dzdydx sin( ) 2 2 - - - p p p p p p 2) To find the volume of the solid under the paraboloid and above the region z x y = + 2 2 bounded by and , set up but do not evaluate y x = 2 x y = 2 (8) (a) a double integral (6) (b) a triple integral (12) 3) Convert the double integral to polar coordinates. (Do not evaluate). x y dydx x x 2 2 0 2 0 2 2 + - (16) 4) Find the mass m and the center of mass of the lamina with density function ( ,

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: x y that occupies the region , . r p ( , ) x y = { D x y y x = ≤ ≤ ( , ) cos } 2 ≤ ≤ x p (10) 5) Convert the integral to an equivalent iterated triple integral in terms of 1 2 2 2 4 16 4 dzdydx x y x +-∫ ∫ ∫ cylindrical coordinates. Do not evaluate. (12) 6) Describe the region whose area is given by the integral . rdrd q q p p 2 4 6 2 sin ∫ ∫ (15) 7) Use the transformation , to evaluate , where D is the u y x = + v y x = -e dA y x D-∫∫ square with vertices , , and . ( , ) 0 2 ( , ) 2 2 ( , ) 11 ( , ) 1 3...
View Full Document

{[ snackBarMessage ]}

### Page1 / 2

SecBEx3W01 - x y that occupies the region r p x y = D x y y...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online