Production OH

Production OH - and Y is the calculated demand for the...

Info iconThis preview shows pages 1–4. Sign up to view the full content.

View Full Document Right Arrow Icon
month # units OH (x 100, x) ($K, y) 1 39.2 195.7 2 42.6 175.1 3 52.4 272.7 4 35.1 155.4 5 56.7 280.3 6 38.5 173.8 7 48.3 234.6 8 30.3 116.2 9 37.4 153.5 10 40.8 178.9 20 25 30 35 40 45 50 55 60 0 50 100 150 200 250 300 f(x) = 6.39x - 75.62 R² = 0.95 OH Linear Regression for OH x y
Background image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
2ab9c435984718f69fba6be6fe2c535c1bd8eb50.xlsdata & graph
Background image of page 2
2ab9c435984718f69fba6be6fe2c535c1bd8eb50.xls regression calcs units, x OH, y x^2 y^2 x*y 39.2 195.7 1536.64 38298.49 7671.44 42.6 175.1 1814.76 30660.01 7459.26 52.4 272.7 2745.76 74365.29 14289.48 35.1 155.4 1232.01 24149.16 5454.54 56.7 280.3 3214.89 78568.09 15893.01 38.5 173.8 1482.25 30206.44 6691.3 48.3 234.6 2332.89 55037.16 11331.18 30.3 116.2 918.09 13502.44 3520.86 37.4 153.5 1398.76 23562.25 5740.9 40.8 178.9 1664.64 32005.21 7299.12 421.3 1936.2 18340.69 400354.54 85351.09 SUMS 42.13 193.62 MEANS b1 = (E13 - (12*A14*B14)) / (C13 - (12*A14^2)) = 6.3907 b0 = B14 - (H17*A14) = -75.6222 Therefore, by regression, the single straight line which best models the entire demand time series is: Y = 170.0874*x + 694.0152 where x is the week number from the start of the series
Background image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
Background image of page 4
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: and Y is the calculated demand for the number of units. r = (E15 - (12*A16*B16)) / SQRT((C15-(12*A16^2))*(D15-(12*B16^2))) = 0.97 R^2 = r x r = 0.95 Production OH calculator 60 307.82 307.82 25 84.15 84.15 45 211.96 211.96 A B C D E F G H 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 2ab9c435984718f69fba6be6fe2c535c1bd8eb50.xls regression report SUMMARY OUTPUT Regression Statistics Multiple R 0.97 R Square 0.95 Adjusted R Square 0.94 Standard Error 12.83 Observations 10 ANOVA df SS MS F Significance F Regression 1 24150.54 24150.54 146.7 Residual 8 1316.96 164.62 Total 9 25467.5 Coefficients Standard Error t Stat P-value Lower 95% Upper 95% Intercept-75.62 22.6-3.35 0.01-127.73-23.52 X Variable 1 6.39 0.53 12.11 5.17 7.61 A B C D E F G 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18...
View Full Document

This note was uploaded on 01/26/2011 for the course OM 210 taught by Professor Singer during the Fall '08 term at George Mason.

Page1 / 4

Production OH - and Y is the calculated demand for the...

This preview shows document pages 1 - 4. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online