This preview has intentionally blurred sections. Sign up to view the full version.
View Full Document
Unformatted text preview: Solution of the Heat Equation by Separation of Variables The Problem Let u ( x, t ) denote the temperature at position x and time t in a long, thin rod of length ℓ that runs from x = 0 to x = ℓ . Assume that the sides of the rod are insulated so that heat energy neither enters nor leaves the rod through its sides. Also assume that heat energy is neither created nor destroyed (for example by chemical reactions) in the interior of the rod. Then u ( x, t ) obeys the heat equation ∂u ∂ t ( x, t ) = α 2 ∂ 2 u ∂x 2 ( x, t ) for all 0 < x < ℓ and t > (1) This equation was derived in the notes “The Heat Equation (One Space Dimension)”. Suppose further that the temperature at the ends of the rod is held fixed at 0. This information is encoded in the “boundary conditions” u (0 , t ) = 0 for all t > (2) u ( ℓ, t ) = 0 for all t > (3) Finally, also assume that we know the temperature throughout the rod time 0. So there is some given function f ( x ) such that the “initial condition” u ( x, 0) = f ( x ) for all 0 < x < ℓ (4) is satisfied. The problem is to determine u ( x, t ) for all x and t . Outline of the Method of Separation of Variables We are going to solve this problem using the same three steps that we used in solving the wave equation. Step 1 In the first step, we find all solutions of (1) that are of the special form u ( x, t ) = X ( x ) T ( t ) for some function X ( x ) that depends on x but not t and some function T ( t ) that depends on t but not x . Once again, if we find a bunch of solutions X i ( x ) T i ( t ) of this form, then since (1) is a linear equation, ∑ i a i X i ( x ) T i ( t ) is also a solution for any choice of the constants a i . Step 2 We impose the boundary conditions (2) and (3). Step 3 We impose the initial condition (4). The First Step – Finding Factorized Solutions The factorized function u ( x, t ) = X ( x ) T ( t ) is a solution to the heat equation (1) if and only if X ( x ) T ′ ( t ) = α 2 X ′′ ( x ) T ( t ) ⇐⇒ X ′′ ( x ) X ( x ) = 1 α 2 T ′ ( t ) T ( t ) The left hand side is independent of t . The right hand side is independent of x . The two sides are equal. So both sides must be independent of both x and t and hence equal to some constant, say σ . So we have X ′′ (...
View
Full
Document
 Spring '10
 YILMAZ
 Thermodynamics, Boundary value problem, Partial differential equation, Boundary conditions

Click to edit the document details