physicsformulasheet - Double Fringes sin = for < 1 sin...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Double Fringes sin θ = θ for θ< 1 sin θ =m λ /d m= 1,2,3,… y= Ltan θ y=m λ L/d (position of bright fringes) y’= (m+1/2) λ L/d (position of dark fringes) I=cA^2 (first intensity=I A= amplitude) Intensity = 4Icos(y π d/ λ L)^2 Single slit Sin θ =p λ /a p=1,2,3… (angles of dark fringes) Width= 2 λ L/a a= width of slit Circular Aperature W= 2Ltan θ =2.44 λ L/D (D= diameter of aperature) Y= 1.22 λ L/D Refraction nsin θ =nsin θ n= c/v θ c= sin(n2/n1)^-1 (critical angle) s’= (n2/n1)s (plane surface) lateral magnifacation= -s’/s n1/s + n2/s’ = (n2-n1)/R (spherical) 1/s + 1/s’ = 1/f f=R/2 thin lenses 1/f =(n-1)(1/R1- 1/R2) R+ convex toward object f+ converging lense s’+ real image Spherical Mirrors R,f + concave mirror s’+ real image waves λ = 91.18nm/ (1/m^2- 1/n^2) m=1 Lyman m=2 Balmer m=3 Paschen n= m+1 E= hf h= 6.63E-34 f=c/ λ λ =h/p Bragg condition 2dcos θ = m λ En= (h^2)(n^2)/(8mL^2) Relativity Proper length L= sqrt(1- β ^2)l≤ l Proper time t = ∆τ /= sqrt(1- β ^2) ∆τ γ =1/sqrt(1 - u^2/c^2)
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.
Ask a homework question - tutors are online