{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Terms for Exam 3

# Terms for Exam 3 - distribution converges to the population...

This preview shows pages 1–3. Sign up to view the full content.

Terms for Exam 3 Distribution of the Mean Get this by repeatedly sampling the same population with the same number of observations Sampling error The amount of error or the difference between sample statistic and the corresponding population parameter Standard Error of the Mean The standard deviation of the distribution of possible sample means for all samples of size N drawn from a specified population Central limit theorem Given a standard distribution with a mean and variance the sampling distribution of the mean approaches a normal distribution with and mean and variance as N, the sample size increases As the sample size increases the mean of the sampling

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: distribution converges to the population distribution mean Law of large numbers The larger a sample the more it will accurately reflect a population-the larger the sample size the smaller the standard error Z vs T Tests Z tests the standard deviation is KNOWN T tests the standard deviation is UNKNOWN *T STATISTIC ESTIMATES STANDARD ERROR BY USING THE SAMPLE STANDARD DEVIATION-in a T test the denominator and the numerator vary from sample to sample *Z TEST USES THE POPULATION STANDARD DEVIATION-the numerator varies from sample to sample the denominator is constant Degrees of freedom The number of items left in a sample that are free to vary...
View Full Document

{[ snackBarMessage ]}

### What students are saying

• As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

Kiran Temple University Fox School of Business ‘17, Course Hero Intern

• I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

Dana University of Pennsylvania ‘17, Course Hero Intern

• The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

Jill Tulane University ‘16, Course Hero Intern