# 6 - 2π/3 ( −1 / 2, 3 / 2) 3π/4 (− 2 / 2, 2 / 2) 5π/6...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 2π/3 ( −1 / 2, 3 / 2) 3π/4 (− 2 / 2, 2 / 2) 5π/6 (− 3 / 2, 1 / 2) π (−1,0) 7π/6 (− 3 / 2, − 1 / 2) 5π/4 (− 2 / 2 , − 2 / 2) ( −1 / 2, − π/2 (0,1) π/3 ( 1 / 2, 3 / 2) π/4 ( 2 / 2, 2 / 2) π/6 ( 3 / 2, 1 / 2) θ = 0 or 2 π (x,y) = (1,0) 11π/6 ( 3 / 2, − 1 / 2) 7π/4 ( 2 / 2 , − 2 / 2) tan θ = sin θ/ cos θ, sec θ = 1/ cos θ, sin2 θ + cos2 θ = 1, sin2 θ = 1 2 cot θ = cos θ/ sin θ, csc θ = 1/ sin θ, 1 + tan2 θ = sec2 θ, 1 2 cot θ = 1/ tan θ, 1 + cot2 θ = csc2 θ, − 1 2 cos(2θ), cos2 θ = + 1 2 cos(2θ), sin(2θ) = 2 sin θ cos θ, cos(2θ) = cos2 θ − sin2 θ 4π/3 3 / 2) x = cos θ 3π/2 (0,−1) 5π/3 ( 1 / 2, − 3 / 2) y = sin θ [sin x]′ = cos x [ln x]′ = b [cos x]′ = − sin x [ln g (x)]′ = g ′ (x) g (x) [tan x]′ = sec2 x [ex ]′ = ex [sec x]′ = sec x tan x [eg(x) ]′ = eg(x) g ′ (x) [csc x]′ = − csc x cot x [f g ]′ = f ′ g + f g ′ [cot x]′ = − csc2 x f g ′ 1 x = gf ′ − f g ′ g2 v du. f (x) dx = F (b) − F (a), a F ′ (x) = f (x). f (g (x)) g ′ (x) dx = f (u) du, u = g (x). u dv = uv − L’Hospital’s rule: Exponent rule: If 0 ∞ f (x) → or ± . g (x) 0 ∞ Then lim x→c f (x) f ′ (x) = lim ′ . x→c g (x) x→c g (x) x→c If f (x)g(x) → 00 , 1∞ , ∞0 or 0∞ . Then lim f (x)g(x) = eL where L = lim ln[f (x)g(x) ]. ∞ Geometric series rule: k=1 ∞ crk−1 = c/(1 − r), if |r| < 1 . divergent, if |r| ≥ 1 p-series rule: k =q 1 converges if p > 1, diverges if p ≤ 1. kp ∞ Divergence test: If lim ak = 0. k→∞ Then k =q ak is divergent. ∞ ∞ Integral test: If ak = f (k ), f (x) ≥ 0, f (x) continuous, f (x) decreasing. ∞ ∞ Then k =q ak behaves like q ∞ ∞ f (x) dx. Basic comp test: If 0 < ak ≤ bk . Then k =q bk conv ⇒ k =q ak conv, and k =q ak div ⇒ k =q bk div. Limit comp test: Given ak > 0, bk > 0 consider lim ak = L. k→∞ bk ∞ ∞ If 0 < L < ∞, then bk behave the same. ak and k =q k =q ∞ ∞ If L = 0, then ak conv if bk conv. k =q k =q ∞ ∞ If L = ∞, then ak div if bk div. k =q k =q ∞ ∞ Alt series test: If bk > 0, bk decreasing, lim bk = 0. k→∞ ∞ Then k =q ∞ (−1)k bk and k =q (−1)k−1 bk conv. Absolute conv thm: k =q |ak | conv ⇒ k =q ak conv. Ratio test: If lim k→∞ ak+1 = L. ak ∞ Then k =q ∞ ak is absolutely conv if L < 1, divergent if L > 1 or L = ∞. ak is absolutely conv if L < 1, divergent if L > 1 or L = ∞. k =q ∞ ∞ N ∞ Root test: If lim |ak |1/k = L. k→∞ ∞ Then Int estimate: If k =q ak satisﬁes conds of Int Test and is conv. ∞ Then N +1 f (x) dx ≤ k =q ∞ ak − k =q ak ≤ N N f (x) dx. Alt series estimate: If k =q (−1)k bk satisﬁes conds of Alt Ser Test and is conv. ∞ Then k =q (−1)k bk − k =q (−1)k bk ≤ bN +1 . Power series w/ref pt a: f (x) = k=0 ck (x − a)k . ∞ Taylor’s formula for power series w/ref pt a: nth -degree Taylor polynomial of f (x) w/ref pt a: n+1 f (x) = k=0 f (k) (a) (x − a)k . k! n Tn (x) = k=0 f (k) (a) (x − a)k . k! Taylor’s ineq: |f (x) − Tn (x)| ≤ Md for all x ∈ I , where M is max val of |f (n+1) (x)| in I = [a − d, a + d], [a − d, a] or [a, a + d]. (n + 1)! Classic Maclaurin series. 1 = 1−x ex = ∞ ∞ xk , k=0 ∞ −1 < x < 1. −∞ < x < ∞. sin(x) = k=0 ∞ (−1)k x2k+1 , (2k + 1)! (−1)k x2k , (2k )! ∞ −∞ < x < ∞. −∞ < x < ∞. arctan(x) = k=0 ∞ (−1)k x2k+1 , 2k + 1 pk x, k −1 ≤ x ≤ 1. k=0 xk , k! cos(x) = k=0 (1 + x)p = k=0 −1 < x < 1. Parametric curve Slope of C : Length of C : dy = dx dy dt dx dt C : (x, y ) = (f (t), g (t)), a ≤ t ≤ b, 2 w/surface of revolution S (about x-axis assuming y ≥ 0). d dy dt ( dx ) . dx dt . Concavity of C : dy = dx2 Net area b/w C and x-axis: Volume of S : y dx dt. dt π y 2 dx dt . dt ( dx )2 + ( dy )2 dt . dt dt Area of S : 2πy ( dx )2 + ( dy )2 dt . dt dt Simple parametric curves. Line: Circle w/radius r: x = x0 + (x1 − x0 )t, y = y0 + (y1 − y0 )t. Ellipse w/radii a, b in x, y : x = x0 + a cos(t), y = y0 + b sin(t). x = x0 + r cos(t), y = y0 + r sin(t). Polar coordinates (r, θ), Polar coords: polar graphs r = h(θ) in x, y -plane. Polar-Cartesian relation: x = r cos θ, y = r sin θ. θ=angle of radial axis, r=coord along radial axis. Polar graph: points in x, y -plane satisfying r = h(θ). Parametric eqs of polar graph: x = h(θ) cos θ, y = h(θ) sin θ. Polar area of polar graph: 12 2r dθ. ...
View Full Document

## This note was uploaded on 01/27/2011 for the course M 408d taught by Professor Sadler during the Spring '07 term at University of Texas.

Ask a homework question - tutors are online