{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

assn13 - ORIE 3300/5300 Individual work ASSIGNMENT 13 Fall...

Info icon This preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon
ORIE 3300/5300 ASSIGNMENT 13 Fall 2010 Individual work. Not to be handed in or graded. 1. Consider the following integer program: maximize x 1 + 3 x 2 subject to 2 x 1 + 5 x 2 9 x 1 , x 2 0 , integer . Solve this problem by branch and bound by starting from an optimal tableau for the initial linear programming relaxation, and then using the dual simplex method to solve the linear programming relaxation of each subproblem obtained by adding the extra constraint defining the branch. 2. The diet problem can be written as min c T x, Ax b, x 0, where x j is the amount of food j to be purchased at a unit cost of c j > 0, a ij is the amount of nutrient i provided by each unit of food j , and b i is the daily requirement of nutrient i . After adding surplus variables t and putting into standard equality form, this becomes max( - c ) T x, Ax - t = b, x 0 , t 0. Show that the initial basis consisting of all the surplus variables is dual-feasible, so that this problem is ideal for solution by the dual simplex method.
Image of page 1

Info icon This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 2
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern