06_integer_prog

# 06_integer_prog - Lecture 6 Integer Programming Models...

This preview shows pages 1–8. Sign up to view the full content.

8/14/04 J. Bard and J. W. Barnes Operations Research Models and Methods Copyright 2004 - All rights reserved Lecture 6 – Integer Programming Models Topics General model Logic constraint Defining decision variables Continuous vs. integral solution Applications: staff scheduling, fixed charge, TSP Piecewise linear approximations to nonlinear functions

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
2 Linear Integer Programming - IP Maximize/Minimize   z  =  c 1 x 1  +  c 2 x 2  +       +  c n x n   {   =   } b i ,    i  = 1,…, m s.t. a i 1 x 1  +  a i 2 x 2  +       +  a in x n   x j     u j ,      j  = 1,…, n x j  integer for some or all  j  =1,…, n
3 An IP is a  mixed integer program  (MIP)  if some but not all decision variables are integer. If all decision variables are integer we have a  pure  IP. A binary decision variable must be 0 or 1  (a yes-no decision variable). If all decision variables are binary the IP is a binary IP ( BIP ) Decision variables not integer-constrained are continuous decision variables Decision Variables in IP Models

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
4 Why study IP? (1) LP divisibility assumption (fractional  solutions are permissible) is  not  always  valid. (2) Binary variables allow powerful new  techniques like  logical  constraints.
5 Call Center Employee Scheduling Day is divided into 6 periods, 4 hours each Demand/period = (15, 10, 40, 70, 40, 35) Workforce consists of full-timers and part-timers FT = 8-hour shift, \$121.6/ shift PT = 4-hr shift, \$51.8/shift One PT = 5/6 FT In any period, at least 2/3 of the staff must be FT employees Problem : Find minimum cost workforce

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
6 Decision variables : x t  = # of full-time employees that work shift  t y t  = # of part-time employees that work shift  t   Min    z  =  121.6( x 1  +     + x 6 )  +  51.8( y 1    + y 6 ) Call Center Employee IP Model s.t. x 6  +  x 1 +   5 6   y 1   15 x 1  +  x 2 +   5 6   y 2   10 . . . x 5  +  x 6 +   5 6   y 6       35 x 6  +  x 1    2 3  ( x 6  +  x 1   y 1 ) . . . x 5  +  x 6    2 3  ( x 5  +  x 6   y 6 )   x t    0,    y t    0,     t  = 1,2, …,6
Optimal LP solution x  = [ 7.06,  0,  40,  12.94,  27.06,  7.94 ] y   = [ 0,  3.53,   0,  20.47,   0,  0 ] z  = 12,795.2    Not feasible to IP model A correction method: round continuous solution  x  = [  8,  0,  40,  13,  27,  8 ] y  = [  0,  3,  0,  21,  0,  0 ] z  = 12,916.8 Feasible – Yes, Optimal? We do not know!

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

### Page1 / 36

06_integer_prog - Lecture 6 Integer Programming Models...

This preview shows document pages 1 - 8. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online