NF1 - Topics Terminology and Notation Network diagrams...

Info icon This preview shows pages 1–10. Sign up to view the full content.

View Full Document Right Arrow Icon
8/14/04 J. Bard and J. W. Barnes Operations Research Models and Methods Copyright 2004 - All rights reserved Lecture 4 – Network Flow Programming Topics Terminology and Notation Network diagrams Generic problems (TP, AP, SPT, STP, MF) LP formulations Finding solutions with Excel add-in
Image of page 1

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
2 Network Optimization Network flow programming (NFP) is a special case of  linear programming Important to identify problems that can be modeled as  networks because: (1) Network representations make optimization models  easier to visualize and explain (1) Very efficient algorithms are available
Image of page 2
3 Example of (Distribution) Network 8 5 6 4 2 7 3 1 (6) (3) (5) (7) (4) (2) (4) (5) (5) (6) (4) (7) (6) (3) [-150] [200] [-300] [200] [-200] [-200] (2) (2) (7) [-250] [700] [external flow] (cost) lower = 0, upper = 200 1 2 3 4 5 6 7 10 8 9 11 12 13 14 15 16 17
Image of page 3

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
4 Terminology • Nodes and arcs • Arc flow • Upper and lower bounds • Cost • Gains • External flow • Optimal flow
Image of page 4
5 Network Flow Problems Pure Minimum Cost Flow Problem Generalized Minimum Cost Flow Problem Linear Program Transportation Problem Assignment Problem Shortest Path Problem Maximum Flow Problem Less general models More general models
Image of page 5

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
6 Transportation Problem We wish to ship goods (a single commodity) from            m  warehouses to  n  destinations at minimum cost. Warehouse i has s i  units available  i  = 1, …,  m  and destination j  has a demand of  d j j  = 1, …, n   Goal:   Ship the goods from warehouses to destinations            at minimum cost. Example: Plants Supply Markets Demand San Francisco 350 New York 325 Los Angeles 600 Chicago 300 Austin 275 Unit Shipping Costs From/To NY Chicago Austin SF 2.5 1.7 1.8 LA NA 1.8 1.4
Image of page 6
7 • Total supply = 950, total demand = 900   • Transportation problem is defined on a bipartite network • Arcs only go from supply nodes to destination nodes; to handle excess  supply create a  dummy  destination with a demand of 50 • The min-cost flow network for this transportation problem is given by SF LA NY CHI AUS DUM [350] [600] [-50] [-275] [-300] [-325] (2.5) (1.7) (1.8) (0) (M) (1.8) (1.4) (0)
Image of page 7

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
8 Costs on arcs to dummy destination = 0 (In some settings it would be necessary   to include a nonzero warehousing cost.) The objective coefficient on the LA   NY arc is  M . This denotes a large value and effectively prohibits use of this arc (could eliminate arc). We are assured of integer solutions because technological matrix  A  is totally unimodular.  (important in some applications) Modeling Issues
Image of page 8
9 The LP formulation of the transportation problem with  m sources and  n  destinations is given by: Min m =1    n =1 c ij x ij s.t.
Image of page 9

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full Document Right Arrow Icon
Image of page 10
This is the end of the preview. Sign up to access the rest of the document.

{[ snackBarMessage ]}

What students are saying

  • Left Quote Icon

    As a current student on this bumpy collegiate pathway, I stumbled upon Course Hero, where I can find study resources for nearly all my courses, get online help from tutors 24/7, and even share my old projects, papers, and lecture notes with other students.

    Student Picture

    Kiran Temple University Fox School of Business ‘17, Course Hero Intern

  • Left Quote Icon

    I cannot even describe how much Course Hero helped me this summer. It’s truly become something I can always rely on and help me. In the end, I was not only able to survive summer classes, but I was able to thrive thanks to Course Hero.

    Student Picture

    Dana University of Pennsylvania ‘17, Course Hero Intern

  • Left Quote Icon

    The ability to access any university’s resources through Course Hero proved invaluable in my case. I was behind on Tulane coursework and actually used UCLA’s materials to help me move forward and get everything together on time.

    Student Picture

    Jill Tulane University ‘16, Course Hero Intern