oct 15 lecture

# Oct 15 lecture - b S is testable =df O>S This excludes universal statements This approach is wrong though widely accepted c S is testable

This preview shows pages 1–2. Sign up to view the full content.

Empirical Content? A statement that lacks empirical content isn't even good enough to be false, whereas a false  statement at least makes sense and gives us something to test. Indeed, put “not” in front of a  false statement and you have a true statement. Science doesn't want anything irrelevant to empirical content. Criteria for having empirical content: Statements (PNS Chap 3; Popper, Hempel in Zucker) Terms (PNS Chap 7; Popper in Zucker) Theories (PNS Chap 6; Popper, Lakatos in Zucker) Obvious Empirical Statements: Observed Data (Observation Statements) Statements have empirical content according to Hempel if they are  testable . What is testable? a. S is testable =df it logically implies some observation statement (S->O) You have to be able to make a prediction that is testable and can either be observed or not  observed. This is the right idea, though unpolished.

This preview has intentionally blurred sections. Sign up to view the full version.

View Full Document
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: b. S is testable =df O->S This excludes universal statements. This approach is wrong, though widely accepted. c. S is testable =df (Statements + Aux Hypothesis) Observation → Something like Statement: All crows are black. (General) Aux Hypothesis: Albert is a crow. (Specific) Observation: Albert is black. (Observation) Unfortunately just about any statement, period, will pass this test. In that case, you'd need to say that the Hypothesis itself has empirical content without begging the question. 1. Direct Testable a) S is an O b) (S & O1)->O2 O1+O2 2. Indirect Testable a) (S&H)->Directly Testable statement (D) and H=/ D b) H must be directly testable This is the right idea, polishing further from a., but we're still not quite there yet....
View Full Document

## This note was uploaded on 01/27/2011 for the course PHI 365 taught by Professor Spector during the Spring '10 term at SUNY Stony Brook.

### Page1 / 2

Oct 15 lecture - b S is testable =df O>S This excludes universal statements This approach is wrong though widely accepted c S is testable

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document
Ask a homework question - tutors are online