mth.122.handout.10

mth.122.handout.10 - MTH 122 Calculus II Essex County...

Info iconThis preview shows pages 1–2. Sign up to view the full content.

View Full Document Right Arrow Icon

Info iconThis preview has intentionally blurred sections. Sign up to view the full version.

View Full DocumentRight Arrow Icon
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: MTH 122 Calculus II Essex County College Division of Mathematics and Physics 1 Lecture Notes #10 Sakai Web Project Material 1 Arc Length Everyone should be familiar with the distance formula that was introduced in elementary algebra. It is a basic formula for the linear distance between two points in the plane. It states that the distance between ( x 1 , y 1 ) and ( x 2 , y 2 ) is d = q ( x 2- x 1 ) 2 + ( y 2- y 1 ) 2 . This distance, of course, is for a line connecting those two points. However, what if we have a curve and we want to know the distance along that curve between two points? We will basically cut the curve into an infinite number of small linear sections, and then add these sections together to get the arc length, or distance between two points on the curve. Here a definite integral can be used to find the arc length, where we have a curve, f ( x ), and two points on this curve that are connected by a curve that is continuously differentiable on the interval. Arc Length Formula: If f is continuous on [ a, b ], then the length of the curve y = f ( x ), a x b , is L = Z b a q 1 + [ f ( x )] 2 d x....
View Full Document

This note was uploaded on 01/31/2011 for the course MTH 222 taught by Professor Ban during the Spring '10 term at Essex County College.

Page1 / 6

mth.122.handout.10 - MTH 122 Calculus II Essex County...

This preview shows document pages 1 - 2. Sign up to view the full document.

View Full Document Right Arrow Icon
Ask a homework question - tutors are online