{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

chapter 1 45

# chapter 1 45 - SECTION 1.6 lNVERSE FUNCTIONS AND L 46...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: SECTION 1.6 lNVERSE FUNCTIONS AND LOGARITHMS 45 40 46. l><10'0 0 7><1015 From the graphs. we see that f(:n) = 360.1 > g(w) = lnx for approximately 0 < a: < 3.06. and then g(a:) > f(.’£) for 3.06 < m < 3.43 X 1015 (approximately). At that point. the graph off ﬁnally surpasses the graph ofg for good. 47. (a) Shift the graph of y : log10 a: ﬁve units to the (b) Reﬂect the graph of y : lna: about the m-axis left to obtain the graph of y = log10(a: + 5). to obtain the graph ofy : ~ lnx. Note the vertical asymptote of ac : —5. y = In a; y : — lnm y : logic 33 y :10g10(\$ ‘l' 5) y y y 0 l E 0 l 3 0 l 7 48. (a) Reﬂect the graph of y = ln 2: about the y-axis to (b) Reﬂect the portion of the graph of y : 1n 9: to obtain the graph of y : In (—50) the right of the y—axis about the y—axis. The 3/ : 111\$ y : 1n(—;y) graph of y = ln |ac| is that reﬂection in addition y to the original portion. y 2 In a: y = ln [ml 0 1 J: y 0 1 —; 49-(a)21H\$—1 ‘5 lnx~§ —> 33*61/2—«5 (b)e‘m*5 A m 1115 m ln5 50.(a)e2\$+377:0 => 62w+327 => 2\$+3—ln7 2x—ln7 3 _> m_§(1n7—3) (b)ln(5—2\$)——3 —> 5 2\$~e_3 2xa5—e_3 => m=§(5ie*3) 51. (2021423 <=> log232m~5 c» m:5+log23. 0r:21*5=3 4: 1n(2\$*5)—1n3 (x 5)in2_1n3 s—> x—5:ln—3 c» m=5+ln—3 ln2 1112 (b) 111m + ln(;c i 1) : ln(a:(a: — 1)) = 1 (a) 20(3: ~ 1): e1 (a) :02 — w ~ 6 : O. The quadratic formula (with a : 1. b 2 —1, and c = —e) gives a: = %(1 :l: x/l + 46), but we reject the negative root since the natural logarithm is not deﬁned for ac < 0. So 5c : %(1 + (/1 + 4e). ...
View Full Document

{[ snackBarMessage ]}