{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

chapter 2 15

# chapter 2 15 - SECTION 2.3 CALCULATING LIMITS USING THE...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: SECTION 2.3 CALCULATING LIMITS USING THE LLMlT LAWS D 32. (a) 0.5 (b) -- —0.001 0.2886992 —0.0001 0.2886775 20.00001 0.2886754 Al 1 —0.000001 0.2886752 0 0.000001 0.2886751 11m v3 + 3’ — *5 m 0.29 0.00001 0.2886749 .E—>0 ”3 0.0001 0.2886727 0.001 0.2886511 The limit appears to be approximately 0.2887. (C) lim< 3+\$_\/§- 3+x~—\/§) 2 lim M 2 lim ; z—>0 w ./3+:c——\/§ \$20\$(\/3+w+\/§) w—>0\/3+x+\/§ lirral 2 35% Limit Laws 5 and 1 lini)./3+;z:+hmO\/§ [ I — 1 [7 and 11] Nina (3 + as) + \/§ 1 [l 7 d 8] : ﬁ . , an «3 + 0 + x/ﬁ _ 1 2 x/i’: 33. Let f(m) 2 2:112. g(m) 2 332 cos 207m: and h(m) 2 x2. Then ~13 eos207r\$ S 1 2 —ac2 S (:2 cos2077m S m2 2 ﬁx) 3 g(a:) S h(:c). So since Tin}J f(\$) 2 111% Mm) 2 0. by the Squeeze Theorem we have lin}J g(;v) 2 0. 34. Let ﬂat) 2 —\/m. g(a:) 2 W sin(7r/;I:), and h(a:) : M. Then —1 s sin(7r/2:) g 1 :> 2W 3 WsinM/x) S 3:3 + m2 2> f(:c) 3 9(27) 3 h.(a:). So since 311:1?) f(m) 2 £121)ng) 2 0. by the Squeeze Theorem we have linq) 9(17) 2 O. 35.1 5 ﬁx) 3 2:2 +2\$+2for all :0. Now limll 2 1 and z—p2 113131 (2:2 + 22: + 2) 2 lim1 m2 + 2 lim1 :0 + lim 2 2 (~1)2 + 2(—1)+ 2 2 1. Therefore. by the Squeeze I—>2 122 m—2—1 Theorem. lim f(:c)2 . 79 ...
View Full Document

{[ snackBarMessage ]}