{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

chapter 2 37 - SECTION 2.6 LlMITS ATINFINITY HORIZONTAL...

Info iconThis preview shows page 1. Sign up to view the full content.

View Full Document Right Arrow Icon
Background image of page 1
This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: SECTION 2.6 LlMITS ATINFINITY; HORIZONTAL ASYMPTOTES U 101 3. (a) lim2 f(;z:) 2 00 (b) limk f(:c) 2 00 (c) 111311 + M) : —oo (d) $132010) = 1 (c) 11111 f(;r) = 2 (f) Vertical: an 2 ~1. m 2 2: Horizontal: y 2 1. y 2 2 4. (a) zlim g(:z) 2 2 (b) 11111 9(17) 2 —2 (c) lirggkv) 2 00 (d) lin%)g(:n) 2 ~00 (e) I lirg+ g(:c) 2 —oo (f) Vertical: x 2 —2. ac 2 0. an 2 3: Horizontal: y 2 —2. y 2 2 5. f(0) 2 0. f(1) 21. lim flat) 2 0. 6. lim+ fix) 2 oo. lim f(m) 2 700. 1—100 z—>O z—>O— f is odd lim f(a:) 2 1. 1h} f(a:) 2 1 8. gal—11:12flm) 2 00. zl1r_.noof(m)2 3. .2100 = ~3 9. If fix) 2 202/22. then acalculator gives f(0) 2 0. f(1) 2 0.5, f(2) 2 1. f(3) 2 1.125. f(4) 2 1. f(5) : 0.78125. f(6) = 0.5625. f(7) : 0.3828125. f(8) : 0.25. f(9) : 0158203125. f(10) : 009765625. f(20) e 000038147. f(50) a 2.2204 X 10712. f(100) a 7.8886 x 10—27. It appears that lim (502/?) 2 0. {11-400 10. (a) From a graph 0ff(3:) 2 (1 — 2/23)1 in a window of [0. 10.000] by [0. 0.2]. (to two decimal places.) we estimate that lim f(m) 2 0.14 z—>oo ...
View Full Document

{[ snackBarMessage ]}