{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

chapter 2 37

# chapter 2 37 - SECTION 2.6 LlMITS ATINFINITY HORIZONTAL...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: SECTION 2.6 LlMITS ATINFINITY; HORIZONTAL ASYMPTOTES U 101 3. (a) lim2 f(;z:) 2 00 (b) limk f(:c) 2 00 (c) 111311 + M) : —oo (d) \$132010) = 1 (c) 11111 f(;r) = 2 (f) Vertical: an 2 ~1. m 2 2: Horizontal: y 2 1. y 2 2 4. (a) zlim g(:z) 2 2 (b) 11111 9(17) 2 —2 (c) lirggkv) 2 00 (d) lin%)g(:n) 2 ~00 (e) I lirg+ g(:c) 2 —oo (f) Vertical: x 2 —2. ac 2 0. an 2 3: Horizontal: y 2 —2. y 2 2 5. f(0) 2 0. f(1) 21. lim ﬂat) 2 0. 6. lim+ ﬁx) 2 oo. lim f(m) 2 700. 1—100 z—>O z—>O— f is odd lim f(a:) 2 1. 1h} f(a:) 2 1 8. gal—11:12ﬂm) 2 00. zl1r_.noof(m)2 3. .2100 = ~3 9. If ﬁx) 2 202/22. then acalculator gives f(0) 2 0. f(1) 2 0.5, f(2) 2 1. f(3) 2 1.125. f(4) 2 1. f(5) : 0.78125. f(6) = 0.5625. f(7) : 0.3828125. f(8) : 0.25. f(9) : 0158203125. f(10) : 009765625. f(20) e 000038147. f(50) a 2.2204 X 10712. f(100) a 7.8886 x 10—27. It appears that lim (502/?) 2 0. {11-400 10. (a) From a graph 0ff(3:) 2 (1 — 2/23)1 in a window of [0. 10.000] by [0. 0.2]. (to two decimal places.) we estimate that lim f(m) 2 0.14 z—>oo ...
View Full Document

{[ snackBarMessage ]}