{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

chapter 2 82

# chapter 2 82 - 146 CHAPTER 2 LIMITS AND DERIVATlVES 1 52...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 146 CHAPTER 2 LIMITS AND DERIVATlVES 1 52. The slope of the tangent to y = m + 1 is w _ (:c+h)+1 _:c+1 . (:I:+h)—1 x—l _ (a:—1)(x+h+1)e(m+1)(:c+h—1) l ————————:l __—_——————— #35 h 11135 h(m—1)(m+h—1) —2h 2 :liirbmx—ixHh—i) : (m—1)2 Soat(2,3)tm:— =ﬂ2 => y—3:—2(m—2) : (2 #1)2 s 2 1 x — => y 2 7290+? At(—1,0)_m: ____ _§ (51—1)? ’ a ‘4 y=-%(w+1) :> y=r%\$'%- ’3’-“ ‘ *4 53. |f(:c)| S g(m) <=> *g(a:) 3 ﬂat) 3 g(:n) and lim g(m) = 0 = lim —g(m). Thus, by the Squeeze Theorem, lim ﬂan) : 0. 54. (a) Note that f is an even function since f (as) : f (—m). Now for any integer n, [[n]] + [PM] : n 4 n : 0, and for any real number k which is not an integer, [16]] + [[7,6]] : [[19]] + (— [Hall A 1): #1. So lim ﬂan) exists :caa. (and is equal to —1) for all values of a. (b) f is discontinuous at all integers. ...
View Full Document

{[ snackBarMessage ]}