{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Chapter 3 1

# Chapter 3 1 - 3 Cl DIFFERENTIATION RULES 3.1 Derivatives of...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 3 Cl DIFFERENTIATION RULES 3.1 Derivatives of Polynomials and Exponential Functions eh—l 1. (a) e is the number such that lim 11—0 ('3) 2 7h — 1 . 2.8h — 1 , From the tables (to two decimal places) [111% h : 0.99 and \$1111) : 1.03. Since 0.99 < 1 < 1.03, 2.7 < e < 2.8. 2. (a) (b) f(;v) : e“ is an exponential function and g(w) : we is a - a: d e _ e—l power function. E (e ) — er and dar (:c ) 7 ea: . (c) f (\$) : e“: grows more rapidly than 9(1) 2 are when so is large. The function value at a: 2 0 is 1 and the slope at :c : 0 is 1. 3.f f(:c) : 186.5 is a constant function so its derivative is 0 that is. f'(m )— — 0. 4.f f:(ac) \/3—0 18 a constant function so its derivative IS 0 that IS f (1:): 0. 5.f(:c):593~1=> f(w)=5~0:5 6.F F:(m) —4\$10 :> F013): —4(10m10— 1) : 410359 7f f(:c)=:c2 +3m—4 => f’(m)=2m2_1+3— 022m+3 8. g(:I:) — 52:8 —2w5 +6 => 9 (m) — 5(8\$8_1) ~2(5m5 ) +0 =40\$7 ~10\$4 9.x f—(t) — W + 8) 2» f (t) = at“ + 8) =1<4t4‘1+ 0) = t3 10.f f(t) 2 5t6 — 314 + t => f’(t) : %(6t5) — 3(4253) +1 : 3:5 1 1213 +1 -2/5 :> y' : —3x(_2/5)_1 : ¥gm—7/5 _ _ 2 5 11. y = m 5 _ 5m7/5 12. 31:561-1-3 :> y':5(e w)+0=5€\$ 13. V(r) : gnrs :> V'(r)= 377(31"2 )— ~ 47rr2 14. R(t) : 525*“ :> R'(t) : 5[—§t(’3/5)‘1] : —3t‘8/5 151 ...
View Full Document

{[ snackBarMessage ]}