{[ promptMessage ]}

Bookmark it

{[ promptMessage ]}

Chapter 3 29

# Chapter 3 29 - 12 13 14 15 16 17 18 19 20 21 23 24 25...

This preview shows page 1. Sign up to view the full content.

This is the end of the preview. Sign up to access the rest of the document.

Unformatted text preview: 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 23. 24. 25. SECTION 3.5 THE CHAIN RULE D sec2 t f(t) : \3/1+tant : (1 +tant)l/3 : f’(t) : %(1+tant)“2/35ec2t = —-——— 3 ‘3/(1+ta.nt)2 y = cos(a3 + m3) i y/ : — sin(a3 + :03) ~3\$2 [a3 isjust a constant] 2 +3222 sin(a3 + 933) y = a3 + cos3 a: :> y' : 3(cos \$)2(— sinm) [a3 is just a constant] 2 —3sinat:cos2 m d y = 6—7” 2 y’ = (\$me (—mm) = e‘m” (—m) = “me—m1 y : 4sec 53v => 3/ = 4360 5w tan 5\$(5) : 20 sec 590 tan 5w 9(33) = (1 + 4m)5(3 + :8 — \$2)8 => g’(:c) : (1+ 435)5 - 8(3 + :1: — x2)7(1— 2x) + (3 + a: — x2)8 ~ 5(1+ 4x)4 - 4 : 4(1 + 4\$)4(3 + :1: — x2)7 [2(1 + 42:)(1 — 2x) + 5(3 + m — 3.3)] = 4(1 + 4\$)4(3 —— an — m2)7 [(2 + 4x — 163:2) + (15 + 517 — 5%)] = 4(1 + 4:0)4(3 —— m — m2)7 (17 + 93: — 21x2) W) = (754 ~ 1)3(t3 +1)4l is h’(t) = (t4 — 1)3 -4(t3 + 1)3(3t2) + (t3 +1)4.3(14 — 1)2(4t3) : 12t2(t4 — 1)2(t3 +1)3 [(51 21) + t(t3 + 1)] :12t2(t4 —1)2(t3 +1)3 (22:4 + t — 1) y : (2:1: — 5)4(8x2 — 5) ‘3 :> y’ : 4(23: — 5)3(2)(8:i2 5)‘3 : (2m 5)4( 3)(83:2 5)‘4 (16\$) : 8(2x — 5)3(8\$2 ~ 5)‘3 — 4833(290 — 5)4(8m2 — 5) ‘4 [This simpliﬁes to 8(2x ~ 5)3(8352 — 5) ‘4(—4a:2 + 301' — 5).] y : (222 +1)(\$2 + 2)”3 9' : 293W + 2W3 + (\$2 + 1) (g) (x2 + 2)‘2/3 (2x) : 2m(:c2 + 2)1/3[1 + 7562232)] 2 _z 2 y : :ce => 14' = me‘m2(—2x) + e“ -1: 6W2 (—2er + 1) 2 8—12(1 — 23:2) . y : 675\$ cos 3m 2?, y’ : e751 (—3sin 3x) + (cos 3\$)(—5€75\$) = —e‘51(3sin 3:0 + 5cos 3:15) d ZCOSE y = e :> y' = e“°” - % (mcosm) = em“Lr [m(—sinm) + (00521:) - 1] = emosﬂcosm —;L‘sina:) Using Formula 5 and the Chain Rule, 3; : 10H2 => y' : 101-12(1n10) - i (1 ~ \$2) : —2x(in 10)10HZ. 2+1 2—1 1/2 F : : (Z) 2+1 (2+1) :> —1/2 F'(z) :64) .1 2—1 -1 2+11/2_<z+1)<1>—<z—1)<1) 2 2+1 d2 2+1 2 2+1 (2+1)2 _1(2+1)1/272+1—2+1H1(2+1)1/2 2 1 2(24)“2 (2+1)2 _ 2(2—1)1/2.(Z+1)2 _ (2+1)1/2(2+1)3/2 179 ...
View Full Document

{[ snackBarMessage ]}